From: Vladimir Bondarenko on
Hello,

Mathematica:

Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]

Maple:

tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))

Can you get rid of these tan/arctan ?

Cheers,

Vladimir Bondarenko

Co-founder, CEO, Mathematical Director

http://www.cybertester.com/ Cyber Tester Ltd.

----------------------------------------------------------------

"We must understand that technologies
like these are the way of the future."

----------------------------------------------------------------
----------------------------------------------------------------

http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5

"...... the challenges imply that a solution is built within the
framework of the existent CAS functions & built-in definitions."

----------------------------------------------------------------
----------------------------------------------------------------
From: Martin Brown on
On 04/08/2010 16:07, Vladimir Bondarenko wrote:
> Hello,
>
> Mathematica:
>
> Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
> Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]
>
> Maple:
>
> tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
> 2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))
>
> Can you get rid of these tan/arctan ?

Presumably something along the lines of let t = tan(x/2)

Then tan(x) = s = 2t/(1 - t^2)
and solve the quadratic for t

Applied twice to the argument of arctan( )

Regards,
Martin Brown
From: Waldek Hebisch on
In sci.math.symbolic Vladimir Bondarenko <vb(a)cybertester.com> wrote:
> Hello,
>
> Mathematica:
>
> Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
> Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]
>
> Maple:
>
> tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
> 2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))
>
> Can you get rid of these tan/arctan ?
>

(-18468*sqrt(2)*sqrt(3) + 34300*sqrt(2))/9959

In FriCAS 'normalize' finds out that the result is a root
of degree 4 polynomial. Factor the polynomial and
use numeric evaluation to choose correct root.

--
Waldek Hebisch
hebisch(a)math.uni.wroc.pl
From: clicliclic on

Vladimir Bondarenko schrieb:
>
> Mathematica:
>
> Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
> Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]
>
> Maple:
>
> tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
> 2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))
>
> Can you get rid of these tan/arctan ?
>

Derive 6.10 does it automatically (in 50 steps plus one final step):

[PrecisionDigits:=20,NotationDigits:=20]

TAN(1/4*ATAN(16*SQRT(2)*(11030013328417+6423142241817*SQRT(3))/(~
80380562320289+43647808257288*SQRT(3))))

0.32838122499020253603

34300*SQRT(2)/9959-18468*SQRT(6)/9959

0.32838122499020253603

Stepwise simplification appended below.

Martin.

-

TAN(1/4*ATAN(16*SQRT(2)*(11030013328417+6423142241817*SQRT(3))/(~
80380562320289+43647808257288*SQRT(3))))

" 1/(z+w) -> (z-w)/(z^2-w^2) "

TAN(ATAN((80380562320289-43647808257288*SQRT(3))*(10277027586907~
2*SQRT(6)+176480213254672*SQRT(2))/745641301930928200605698689)/~
4)

" If x>0, ATAN(x) -> pi/2-ATAN(1/x) "

TAN((pi/2-ATAN(1/(19640584598955090192*SQRT(6)/26256601665255541~
729+25652535759856250000*SQRT(2)/26256601665255541729)))/4)

" 1/(z+w) -> (z-w)/(z^2-w^2) "

TAN((pi/2-ATAN(26256601665255541729*(19640584598955090192*SQRT(6~
)/26256601665255541729-25652535759856250000*SQRT(2)/262566016652~
55541729)/38025111217344848896))/4)

" TAN(-z) -> -TAN(z) "

-TAN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-160328~
3484991015625*SQRT(2)/2376569451084053056)/4-pi/8)

" TAN(z) -> SIN(z)/COS(z) "

-SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-160328~
3484991015625*SQRT(2)/2376569451084053056)/4-pi/8)/COS(ATAN(1227~
536537434693137*SQRT(6)/2376569451084053056-1603283484991015625*~
SQRT(2)/2376569451084053056)/4-pi/8)

" SIN(z) -> -SIN(z+pi) "

SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1603283~
484991015625*SQRT(2)/2376569451084053056)/4+7*pi/8)/COS(ATAN(122~
7536537434693137*SQRT(6)/2376569451084053056-1603283484991015625~
*SQRT(2)/2376569451084053056)/4-pi/8)

" SIN(z+n*pi) -> COS(z+(n-1/2)*pi) "

COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1603283~
484991015625*SQRT(2)/2376569451084053056)/4+3*pi/8)/COS(ATAN(122~
7536537434693137*SQRT(6)/2376569451084053056-1603283484991015625~
*SQRT(2)/2376569451084053056)/4-pi/8)

" COS(z) -> -COS(z+pi) "

-COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-160328~
3484991015625*SQRT(2)/2376569451084053056)/4+3*pi/8)/COS(ATAN(12~
27536537434693137*SQRT(6)/2376569451084053056-160328348499101562~
5*SQRT(2)/2376569451084053056)/4+7*pi/8)

" COS(z+n*pi) -> -SIN(z+(n-1/2)*pi) "

COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1603283~
484991015625*SQRT(2)/2376569451084053056)/4+3*pi/8)/SIN(ATAN(122~
7536537434693137*SQRT(6)/2376569451084053056-1603283484991015625~
*SQRT(2)/2376569451084053056)/4+3*pi/8)

" TAN(u/2) -> SIN(u)/(1+COS(u)) "

COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1603283~
484991015625*SQRT(2)/2376569451084053056)/2+pi/4)/(1-COS(ATAN(12~
27536537434693137*SQRT(6)/2376569451084053056-160328348499101562~
5*SQRT(2)/2376569451084053056)/2+3*pi/4))

" COS(z+w) -> COS(z)*COS(w)-SIN(z)*SIN(w) "

(COS(pi/4)*COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053~
056-1603283484991015625*SQRT(2)/2376569451084053056)/2)-SIN(pi/4~
)*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-16032~
83484991015625*SQRT(2)/2376569451084053056)/2))/(1-COS(ATAN(1227~
536537434693137*SQRT(6)/2376569451084053056-1603283484991015625*~
SQRT(2)/2376569451084053056)/2+3*pi/4))

" COS(pi/4) -> SQRT(2)/2 "

(SQRT(2)*COS(ATAN(1227536537434693137*SQRT(6)/237656945108405305~
6-1603283484991015625*SQRT(2)/2376569451084053056)/2)/2-SIN(pi/4~
)*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-16032~
83484991015625*SQRT(2)/2376569451084053056)/2))/(1-COS(ATAN(1227~
536537434693137*SQRT(6)/2376569451084053056-1603283484991015625*~
SQRT(2)/2376569451084053056)/2+3*pi/4))

" COS(ATAN(z)/2) -> (SQRT(SQRT(z^2+1)+z)+SQRT(SQRT(z^2+1)-z))/(2~
*(z^2+1)^(1/4)) "

(SQRT(2)*(SQRT(SQRT((1227536537434693137*SQRT(6)/237656945108405~
3056-1603283484991015625*SQRT(2)/2376569451084053056)^2+1)+12275~
36537434693137*SQRT(6)/2376569451084053056-1603283484991015625*S~
QRT(2)/2376569451084053056)+SQRT(SQRT((1227536537434693137*SQRT(~
6)/2376569451084053056-1603283484991015625*SQRT(2)/2376569451084~
053056)^2+1)-1227536537434693137*SQRT(6)/2376569451084053056+160~
3283484991015625*SQRT(2)/2376569451084053056))/(2*2*((1227536537~
434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2~
)/2376569451084053056)^2+1)^(1/4))-SIN(pi/4)*SIN(ATAN(1227536537~
434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2~
)/2376569451084053056)/2))/(1-COS(ATAN(1227536537434693137*SQRT(~
6)/2376569451084053056-1603283484991015625*SQRT(2)/2376569451084~
053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(SQRT(2)*(SQRT(9845600625*(171538593*SQRT(6)/2-118358233*SQRT(2)~
/2)/1188284725542026528+1227536537434693137*SQRT(6)/237656945108~
4053056-1603283484991015625*SQRT(2)/2376569451084053056)+SQRT(SQ~
RT((1227536537434693137*SQRT(6)/2376569451084053056-160328348499~
1015625*SQRT(2)/2376569451084053056)^2+1)-1227536537434693137*SQ~
RT(6)/2376569451084053056+1603283484991015625*SQRT(2)/2376569451~
084053056))/(4*((1227536537434693137*SQRT(6)/2376569451084053056~
-1603283484991015625*SQRT(2)/2376569451084053056)^2+1)^(1/4))-SI~
N(pi/4)*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056~
-1603283484991015625*SQRT(2)/2376569451084053056)/2))/(1-COS(ATA~
N(1227536537434693137*SQRT(6)/2376569451084053056-16032834849910~
15625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(SQRT(2)*(2^(3/4)*SQRT(901101447300249*SQRT(3)-855421078500625)/~
38322232+SQRT(9845600625*(171538593*SQRT(6)/2-118358233*SQRT(2)/~
2)/1188284725542026528-1227536537434693137*SQRT(6)/2376569451084~
053056+1603283484991015625*SQRT(2)/2376569451084053056))/(4*((12~
27536537434693137*SQRT(6)/2376569451084053056-160328348499101562~
5*SQRT(2)/2376569451084053056)^2+1)^(1/4))-SIN(pi/4)*SIN(ATAN(12~
27536537434693137*SQRT(6)/2376569451084053056-160328348499101562~
5*SQRT(2)/2376569451084053056)/2))/(1-COS(ATAN(12275365374346931~
37*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/23765~
69451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(74267795346376658*SQRT(62715457547050997826111171548885625*SQRT~
(6)-43272424048945478196765666173360625*SQRT(2)+8825128680978058~
2051760147315983424)/(99225*148535590692753316*SQRT(636989655946~
4699780681097*SQRT(6)-4395102513001382096662657*SQRT(2)))-SIN(pi~
/4)*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-160~
3283484991015625*SQRT(2)/2376569451084053056)/2))/(1-COS(ATAN(12~
27536537434693137*SQRT(6)/2376569451084053056-160328348499101562~
5*SQRT(2)/2376569451084053056)/2+3*pi/4))

" 1/(z+w) -> (z-w)/(z^2-w^2) "

(74267795346376658*SQRT(62715457547050997826111171548885625*SQRT~
(6)-43272424048945478196765666173360625*SQRT(2)+8825128680978058~
2051760147315983424)*2^(3/4)*SQRT((171538593*SQRT(3)+118358233)/~
2)/1094591741712559781760737577178556905800-SIN(pi/4)*SIN(ATAN(1~
227536537434693137*SQRT(6)/2376569451084053056-16032834849910156~
25*SQRT(2)/2376569451084053056)/2))/(1-COS(ATAN(1227536537434693~
137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/2376~
569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x+y) -> SQRT((x+SQRT(x^2-y^2))/2)+SQRT((x-SQRT(~
x^2-y^2))/2) "

(148535590692753316*SQRT(2)*SQRT(37133897673188329)*SQRT(7426779~
5346376658)*(SQRT((5754384384*SQRT(6)+18823840000)/2)+SQRT((-265~
149408*SQRT(6)+867361250)/2))/2189183483425119563521475154357113~
811600-SIN(pi/4)*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451~
084053056-1603283484991015625*SQRT(2)/2376569451084053056)/2))/(~
1-COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-16032~
83484991015625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x+y) -> SQRT((x+SQRT(x^2-y^2))/2)+SQRT((x-SQRT(~
x^2-y^2))/2) "

((56*SQRT(2)*(456*SQRT(6)+503)+SQRT((-265149408*SQRT(6)+86736125~
0)/2))/198450-SIN(pi/4)*SIN(ATAN(1227536537434693137*SQRT(6)/237~
6569451084053056-1603283484991015625*SQRT(2)/2376569451084053056~
)/2))/(1-COS(ATAN(1227536537434693137*SQRT(6)/237656945108405305~
6-1603283484991015625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

((51072*SQRT(3)+28168*SQRT(2)+17*(456*SQRT(6)-503))/198450-SIN(p~
i/4)*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-16~
03283484991015625*SQRT(2)/2376569451084053056)/2))/(1-COS(ATAN(1~
227536537434693137*SQRT(6)/2376569451084053056-16032834849910156~
25*SQRT(2)/2376569451084053056)/2+3*pi/4))

" SIN(pi/4) -> SQRT(2)/2 "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)~
*SIN(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-160328~
3484991015625*SQRT(2)/2376569451084053056)/2)/2-8551/198450)/(1-~
COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1603283~
484991015625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" SIN(ATAN(z)/2) -> (SQRT(SQRT(z^2+1)+z)-SQRT(SQRT(z^2+1)-z))/(2~
*(z^2+1)^(1/4)) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)~
*(SQRT(SQRT((1227536537434693137*SQRT(6)/2376569451084053056-160~
3283484991015625*SQRT(2)/2376569451084053056)^2+1)+1227536537434~
693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/2~
376569451084053056)-SQRT(SQRT((1227536537434693137*SQRT(6)/23765~
69451084053056-1603283484991015625*SQRT(2)/2376569451084053056)^~
2+1)-1227536537434693137*SQRT(6)/2376569451084053056+16032834849~
91015625*SQRT(2)/2376569451084053056))/(2*2*((122753653743469313~
7*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/237656~
9451084053056)^2+1)^(1/4))-8551/198450)/(1-COS(ATAN(122753653743~
4693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/~
2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)~
*(SQRT(9845600625*(171538593*SQRT(6)/2-118358233*SQRT(2)/2)/1188~
284725542026528+1227536537434693137*SQRT(6)/2376569451084053056-~
1603283484991015625*SQRT(2)/2376569451084053056)-SQRT(SQRT((1227~
536537434693137*SQRT(6)/2376569451084053056-1603283484991015625*~
SQRT(2)/2376569451084053056)^2+1)-1227536537434693137*SQRT(6)/23~
76569451084053056+1603283484991015625*SQRT(2)/237656945108405305~
6))/(4*((1227536537434693137*SQRT(6)/2376569451084053056-1603283~
484991015625*SQRT(2)/2376569451084053056)^2+1)^(1/4))-8551/19845~
0)/(1-COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1~
603283484991015625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)~
*(2^(3/4)*SQRT(901101447300249*SQRT(3)-855421078500625)/38322232~
-SQRT(9845600625*(171538593*SQRT(6)/2-118358233*SQRT(2)/2)/11882~
84725542026528-1227536537434693137*SQRT(6)/2376569451084053056+1~
603283484991015625*SQRT(2)/2376569451084053056))/(4*((1227536537~
434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2~
)/2376569451084053056)^2+1)^(1/4))-8551/198450)/(1-COS(ATAN(1227~
536537434693137*SQRT(6)/2376569451084053056-1603283484991015625*~
SQRT(2)/2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-7426779~
5346376658*SQRT(62715457547050997826111171548885625*SQRT(6)-4327~
2424048945478196765666173360625*SQRT(2)-882512868097805820517601~
47315983424)/(99225*148535590692753316*SQRT(63698965594646997806~
81097*SQRT(6)-4395102513001382096662657*SQRT(2)))-8551/198450)/(~
1-COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-16032~
83484991015625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" 1/(z+w) -> (z-w)/(z^2-w^2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-7426779~
5346376658*SQRT(62715457547050997826111171548885625*SQRT(6)-4327~
2424048945478196765666173360625*SQRT(2)-882512868097805820517601~
47315983424)*2^(3/4)*SQRT((171538593*SQRT(3)+118358233)/2)/10945~
91741712559781760737577178556905800-8551/198450)/(1-COS(ATAN(122~
7536537434693137*SQRT(6)/2376569451084053056-1603283484991015625~
*SQRT(2)/2376569451084053056)/2+3*pi/4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-1485355~
90692753316*SQRT(2)*SQRT(37133897673188329)*SQRT(742677953463766~
58)*(SQRT((-5754384384*SQRT(6)+18823840000)/2)-SQRT((265149408*S~
QRT(6)+867361250)/2))/2189183483425119563521475154357113811600-8~
551/198450)/(1-COS(ATAN(1227536537434693137*SQRT(6)/237656945108~
4053056-1603283484991015625*SQRT(2)/2376569451084053056)/2+3*pi/~
4))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-(56*SQR~
T(2)*(456*SQRT(6)-503)-SQRT((265149408*SQRT(6)+867361250)/2))/19~
8450-8551/198450)/(1-COS(ATAN(1227536537434693137*SQRT(6)/237656~
9451084053056-1603283484991015625*SQRT(2)/2376569451084053056)/2~
+3*pi/4))

" If x>y>0, SQRT(x+y) -> SQRT((x+SQRT(x^2-y^2))/2)+SQRT((x-SQRT(~
x^2-y^2))/2) "

(1292*SQRT(6)/33075+1216*SQRT(3)/4725+2012*SQRT(2)/14175-(51072*~
SQRT(3)-28168*SQRT(2)-17*(456*SQRT(6)+503))/198450-8551/198450)/~
(1-COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-1603~
283484991015625*SQRT(2)/2376569451084053056)/2+3*pi/4))

" COS(z+n*pi) -> -SIN(z+(n-1/2)*pi) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+SIN(ATAN(122753653743~
4693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/~
2376569451084053056)/2+pi/4))

" SIN(z+w) -> SIN(z)*COS(w)+COS(z)*SIN(w) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+COS(pi/4)*SIN(ATAN(12~
27536537434693137*SQRT(6)/2376569451084053056-160328348499101562~
5*SQRT(2)/2376569451084053056)/2)+SIN(pi/4)*COS(ATAN(12275365374~
34693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)~
/2376569451084053056)/2))

" COS(pi/4) -> SQRT(2)/2 "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+SQRT(2)*SIN(ATAN(1227~
536537434693137*SQRT(6)/2376569451084053056-1603283484991015625*~
SQRT(2)/2376569451084053056)/2)/2+SIN(pi/4)*COS(ATAN(12275365374~
34693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)~
/2376569451084053056)/2))

" SIN(ATAN(z)/2) -> (SQRT(SQRT(z^2+1)+z)-SQRT(SQRT(z^2+1)-z))/(2~
*(z^2+1)^(1/4)) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+SQRT(2)*(SQRT(SQRT((1~
227536537434693137*SQRT(6)/2376569451084053056-16032834849910156~
25*SQRT(2)/2376569451084053056)^2+1)+1227536537434693137*SQRT(6)~
/2376569451084053056-1603283484991015625*SQRT(2)/237656945108405~
3056)-SQRT(SQRT((1227536537434693137*SQRT(6)/2376569451084053056~
-1603283484991015625*SQRT(2)/2376569451084053056)^2+1)-122753653~
7434693137*SQRT(6)/2376569451084053056+1603283484991015625*SQRT(~
2)/2376569451084053056))/(2*2*((1227536537434693137*SQRT(6)/2376~
569451084053056-1603283484991015625*SQRT(2)/2376569451084053056)~
^2+1)^(1/4))+SIN(pi/4)*COS(ATAN(1227536537434693137*SQRT(6)/2376~
569451084053056-1603283484991015625*SQRT(2)/2376569451084053056)~
/2))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+SQRT(2)*(SQRT(9845600~
625*(171538593*SQRT(6)/2-118358233*SQRT(2)/2)/118828472554202652~
8+1227536537434693137*SQRT(6)/2376569451084053056-16032834849910~
15625*SQRT(2)/2376569451084053056)-SQRT(SQRT((122753653743469313~
7*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/237656~
9451084053056)^2+1)-1227536537434693137*SQRT(6)/2376569451084053~
056+1603283484991015625*SQRT(2)/2376569451084053056))/(4*((12275~
36537434693137*SQRT(6)/2376569451084053056-1603283484991015625*S~
QRT(2)/2376569451084053056)^2+1)^(1/4))+SIN(pi/4)*COS(ATAN(12275~
36537434693137*SQRT(6)/2376569451084053056-1603283484991015625*S~
QRT(2)/2376569451084053056)/2))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+SQRT(2)*(2^(3/4)*SQRT~
(901101447300249*SQRT(3)-855421078500625)/38322232-SQRT(98456006~
25*(171538593*SQRT(6)/2-118358233*SQRT(2)/2)/1188284725542026528~
-1227536537434693137*SQRT(6)/2376569451084053056+160328348499101~
5625*SQRT(2)/2376569451084053056))/(4*((1227536537434693137*SQRT~
(6)/2376569451084053056-1603283484991015625*SQRT(2)/237656945108~
4053056)^2+1)^(1/4))+SIN(pi/4)*COS(ATAN(1227536537434693137*SQRT~
(6)/2376569451084053056-1603283484991015625*SQRT(2)/237656945108~
4053056)/2))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+74267795346376658*SQR~
T(62715457547050997826111171548885625*SQRT(6)-432724240489454781~
96765666173360625*SQRT(2)-88251286809780582051760147315983424)/(~
99225*148535590692753316*SQRT(6369896559464699780681097*SQRT(6)-~
4395102513001382096662657*SQRT(2)))+SIN(pi/4)*COS(ATAN(122753653~
7434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(~
2)/2376569451084053056)/2))

" 1/(z+w) -> (z-w)/(z^2-w^2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+74267795346376658*SQR~
T(62715457547050997826111171548885625*SQRT(6)-432724240489454781~
96765666173360625*SQRT(2)-88251286809780582051760147315983424)*2~
^(3/4)*SQRT((171538593*SQRT(3)+118358233)/2)/1094591741712559781~
760737577178556905800+SIN(pi/4)*COS(ATAN(1227536537434693137*SQR~
T(6)/2376569451084053056-1603283484991015625*SQRT(2)/23765694510~
84053056)/2))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+148535590692753316*SQ~
RT(2)*SQRT(37133897673188329)*SQRT(74267795346376658)*(SQRT((-57~
54384384*SQRT(6)+18823840000)/2)-SQRT((265149408*SQRT(6)+8673612~
50)/2))/2189183483425119563521475154357113811600+SIN(pi/4)*COS(A~
TAN(1227536537434693137*SQRT(6)/2376569451084053056-160328348499~
1015625*SQRT(2)/2376569451084053056)/2))

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+(56*SQRT(2)*(456*SQRT~
(6)-503)-SQRT((265149408*SQRT(6)+867361250)/2))/198450+SIN(pi/4)~
*COS(ATAN(1227536537434693137*SQRT(6)/2376569451084053056-160328~
3484991015625*SQRT(2)/2376569451084053056)/2))

" If x>y>0, SQRT(x+y) -> SQRT((x+SQRT(x^2-y^2))/2)+SQRT((x-SQRT(~
x^2-y^2))/2) "

(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1+(51072*SQRT(3)-28168*~
SQRT(2)-17*(456*SQRT(6)+503))/198450+SIN(pi/4)*COS(ATAN(12275365~
37434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT~
(2)/2376569451084053056)/2))

" SIN(pi/4) -> SQRT(2)/2 "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)*COS(ATAN(1227536537434~
693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/2~
376569451084053056)/2)/2-189899/198450)

" COS(ATAN(z)/2) -> (SQRT(SQRT(z^2+1)+z)+SQRT(SQRT(z^2+1)-z))/(2~
*(z^2+1)^(1/4)) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)*(SQRT(SQRT((1227536537~
434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2~
)/2376569451084053056)^2+1)+1227536537434693137*SQRT(6)/23765694~
51084053056-1603283484991015625*SQRT(2)/2376569451084053056)+SQR~
T(SQRT((1227536537434693137*SQRT(6)/2376569451084053056-16032834~
84991015625*SQRT(2)/2376569451084053056)^2+1)-122753653743469313~
7*SQRT(6)/2376569451084053056+1603283484991015625*SQRT(2)/237656~
9451084053056))/(2*2*((1227536537434693137*SQRT(6)/2376569451084~
053056-1603283484991015625*SQRT(2)/2376569451084053056)^2+1)^(1/~
4))-189899/198450)

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)*(SQRT(9845600625*(1715~
38593*SQRT(6)/2-118358233*SQRT(2)/2)/1188284725542026528+1227536~
537434693137*SQRT(6)/2376569451084053056-1603283484991015625*SQR~
T(2)/2376569451084053056)+SQRT(SQRT((1227536537434693137*SQRT(6)~
/2376569451084053056-1603283484991015625*SQRT(2)/237656945108405~
3056)^2+1)-1227536537434693137*SQRT(6)/2376569451084053056+16032~
83484991015625*SQRT(2)/2376569451084053056))/(4*((12275365374346~
93137*SQRT(6)/2376569451084053056-1603283484991015625*SQRT(2)/23~
76569451084053056)^2+1)^(1/4))-189899/198450)

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-SQRT(2)*(2^(3/4)*SQRT(90110144~
7300249*SQRT(3)-855421078500625)/38322232+SQRT(9845600625*(17153~
8593*SQRT(6)/2-118358233*SQRT(2)/2)/1188284725542026528-12275365~
37434693137*SQRT(6)/2376569451084053056+1603283484991015625*SQRT~
(2)/2376569451084053056))/(4*((1227536537434693137*SQRT(6)/23765~
69451084053056-1603283484991015625*SQRT(2)/2376569451084053056)^~
2+1)^(1/4))-189899/198450)

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-74267795346376658*SQRT(6271545~
7547050997826111171548885625*SQRT(6)-432724240489454781967656661~
73360625*SQRT(2)+88251286809780582051760147315983424)/(99225*148~
535590692753316*SQRT(6369896559464699780681097*SQRT(6)-439510251~
3001382096662657*SQRT(2)))-189899/198450)

" 1/(z+w) -> (z-w)/(z^2-w^2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-74267795346376658*SQRT(6271545~
7547050997826111171548885625*SQRT(6)-432724240489454781967656661~
73360625*SQRT(2)+88251286809780582051760147315983424)*2^(3/4)*SQ~
RT((171538593*SQRT(3)+118358233)/2)/1094591741712559781760737577~
178556905800-189899/198450)

" If x>y>0, SQRT(x+y) -> SQRT((x+SQRT(x^2-y^2))/2)+SQRT((x-SQRT(~
x^2-y^2))/2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-148535590692753316*SQRT(2)*SQR~
T(37133897673188329)*SQRT(74267795346376658)*(SQRT((5754384384*S~
QRT(6)+18823840000)/2)+SQRT((-265149408*SQRT(6)+867361250)/2))/2~
189183483425119563521475154357113811600-189899/198450)

" If x>y>0, SQRT(x+y) -> SQRT((x+SQRT(x^2-y^2))/2)+SQRT((x-SQRT(~
x^2-y^2))/2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-(56*SQRT(2)*(456*SQRT(6)+503)+~
SQRT((-265149408*SQRT(6)+867361250)/2))/198450-189899/198450)

" If x>y>0, SQRT(x-y) -> SQRT((x+SQRT(x^2-y^2))/2)-SQRT((x-SQRT(~
x^2-y^2))/2) "

-(2584*SQRT(6)/33075+4024*SQRT(2)/14175)/(1292*SQRT(6)/33075-121~
6*SQRT(3)/4725+2012*SQRT(2)/14175-(51072*SQRT(3)+28168*SQRT(2)+1~
7*(456*SQRT(6)-503))/198450-189899/198450)

" 1/(z+w) -> (z-w)/(z^2-w^2) "

9845600625*(2584*SQRT(6)/33075+4024*SQRT(2)/14175)*(-2432*SQRT(3~
)/4725+90674/99225)/396726724

" one final step "

34300*SQRT(2)/9959-18468*SQRT(6)/9959
From: Peter Pein on
Am Wed, 4 Aug 2010 08:07:33 -0700 (PDT)
schrieb Vladimir Bondarenko <vb(a)cybertester.com>:

> Hello,
>
> Mathematica:
>
> Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
> Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]
>
> Maple:
>
> tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
> 2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))
>
> Can you get rid of these tan/arctan ?
>
> Cheers,
>
> Vladimir Bondarenko
>
> Co-founder, CEO, Mathematical Director
>
> http://www.cybertester.com/ Cyber Tester Ltd.
>
> ----------------------------------------------------------------
>
> "We must understand that technologies
> like these are the way of the future."
>
> ----------------------------------------------------------------
> ----------------------------------------------------------------
>
> http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5
>
> "...... the challenges imply that a solution is built within the
> framework of the existent CAS functions & built-in definitions."
>
> ----------------------------------------------------------------
> ----------------------------------------------------------------

using Mathematica without really knowing what I do:

In[1]:= f[x_] = Tan[ArcTan[(16 Sqrt[2] (11030013328417 +
6423142241817 x)) / (80380562320289 + 43647808257288 x)] / 4];

In[2]:= simp = ToRadicals[RootReduce[FullSimplify[
TrigToExp[ComplexExpand[f[x], TargetFunctions -> {Abs, Log}]] /. x
-> Sqrt[3]]]]
Out[2]= 3848 / Sqrt[68740346 + 39590775 Sqrt[3]]

and tan/arctan have gone :-)

test:

In[3]:= SeriesCoefficient[simp-f[x],{x,Sqrt[3],0}]
Out[3]= 0