From: clicliclic on

Vladimir Bondarenko schrieb:
> On Aug 9, 12:42 am, cliclic...(a)freenet.de wrote:
> > Vladimir Bondarenko schrieb:
> >
> > > Mathematica:
> >
> > > PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> > > 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> > > 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> > > 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
> >
> > > Maple:
> >
> > > Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> > > 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> > > 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
> >
> > > Can you "elementarize" this ?
> >
> > The zeta function part
> >
> > ZETA(2,1/6) + 9*ZETA(2,1/3) - 9*ZETA(2,2/3) - ZETA(2,5/6)
> >
> > 98.44410402
> >
> > may be simplified to
> >
> > 28*ZETA(2,1/3) - 56/3*pi^2
> >
> > 98.44410402
> >
> > which corresponds to
> >
> > -#i*SQRT(3)*(84*LI2((-1+SQRT(3)*#i)/2) + 14*pi^2/3)
> >
> > 98.44410402
> >
>
> Oh, I suspect some definitions in Mathematica/Maple
> Derive and could be different... 8-(
>
> In fact, the above expressions in Mathematica/Maple
> approximate to
>
> 57.32873750797116359667145471557897409239645761367...
>

A private message by Vladimir confirms that nothing is wrong in my
interpretation and transformations of his PolyGamma[] or Psi() terms.

My LI2() is equivalent to MMA's PolyLog[2,] and Maple's polylog(2,). For
the purpose of numerical evaluation and plotting I define this simply as
LI2(z) := - INT(LN(1 - t_*z)/t_, t_, 0, 1); in fact, I hardly ever use
Derive's library definitions of special functions, I usually substitute
my own. (Derive 6.10 has a rudimentary DILOG() in its kernel, which is
subject to some simplifying transformations like DILOG(SQRT(5)/2+1/2) ->
LN(SQRT(5)/2+1/2)^2/2 - pi^2/15 or DILOG(x) -> -DILOG(1-x) -
LN(x)*LN(1-x) + pi^2/6, but numerical evaluation is slow and limited to
real numbers.)

Martin.
From: clicliclic on

clicliclic(a)freenet.de schrieb:
>
> Vladimir Bondarenko schrieb:
> >
> > Mathematica:
> >
> > PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> > 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> > 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> > 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
> >
> > Maple:
> >
> > Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> > 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> > 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
> >
> > Can you "elementarize" this ?
> >
>
> The zeta function part
>
> ZETA(2,1/6) + 9*ZETA(2,1/3) - 9*ZETA(2,2/3) - ZETA(2,5/6)
>
> 98.44410402
>
> may be simplified to
>
> 28*ZETA(2,1/3) - 56/3*pi^2
>
> 98.44410402
>
> which corresponds to
>
> -#i*SQRT(3)*(84*LI2((-1+SQRT(3)*#i)/2) + 14*pi^2/3)
>
> 98.44410402
>

Having gotten rid of the zeta functions, we are now left with three
complex dilogarithm terms:

#i*SQRT(3)*(-84*LI2((-1+SQRT(3)*#i)/2)-48*LI2(-SQRT(3)/2+1+#i*(3~
/2-SQRT(3)))+48*LI2(-SQRT(3)/2+1+#i*(SQRT(3)-3/2))-14*pi^2/3)

57.32873750-4.585505421*10^(-10)*#i

And these simplify to:

8*SQRT(3)*pi*LN(SQRT(3)+2)

[PrecisionDigits:=50,NotationDigits:=50]

57.328737507971163596671454715578974092396457613676

:p

Martin.
From: Vladimir Bondarenko on
On Aug 9, 11:34 pm, cliclic...(a)freenet.de wrote:
> cliclic...(a)freenet.de schrieb:
>
>
>
>
>
>
>
> > Vladimir Bondarenko schrieb:
>
> > > Mathematica:
>
> > > PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> > > 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> > > 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> > > 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
>
> > > Maple:
>
> > > Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> > > 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> > > 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
>
> > > Can you "elementarize" this ?
>
> > The zeta function part
>
> > ZETA(2,1/6) + 9*ZETA(2,1/3) - 9*ZETA(2,2/3) - ZETA(2,5/6)
>
> > 98.44410402
>
> > may be simplified to
>
> > 28*ZETA(2,1/3) - 56/3*pi^2
>
> > 98.44410402
>
> > which corresponds to
>
> > -#i*SQRT(3)*(84*LI2((-1+SQRT(3)*#i)/2) + 14*pi^2/3)
>
> > 98.44410402
>
> Having gotten rid of the zeta functions, we are now left with three
> complex dilogarithm terms:
>
> #i*SQRT(3)*(-84*LI2((-1+SQRT(3)*#i)/2)-48*LI2(-SQRT(3)/2+1+#i*(3~
> /2-SQRT(3)))+48*LI2(-SQRT(3)/2+1+#i*(SQRT(3)-3/2))-14*pi^2/3)
>
> 57.32873750-4.585505421*10^(-10)*#i
>
> And these simplify to:
>
> 8*SQRT(3)*pi*LN(SQRT(3)+2)
>
> [PrecisionDigits:=50,NotationDigits:=50]
>
> 57.328737507971163596671454715578974092396457613676
>
> :p
>
> Martin.

Pefect!

So as we see, there are lots of eerie special functions
linear combinations which are just "school quantities",
very small in size at that as compared with the original
expressions.

http://groups.google.com/group/sci.math.symbolic/browse_thread/thread/2b7878ea9db46b27/ea861b72145e02aa?#ea861b72145e02aa

On the nature and goal of Cyber Tester's challenges

[ ... ]

"By requesting to publish the explicit human-based
solutions we hope to create, to accumulate a solid
stock of patterns to be possibly used along with
regular algorithms to handle various math tasks
automatically."

[ ... ]

So it would be nice to enjoy your full processing.

Cheers, Vladimir