From: Vladimir Bondarenko on
Hello,

Mathematica:

PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]

Maple:

Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))

Can you "elementarize" this ?

Cheers,

Vladimir Bondarenko

Co-founder, CEO, Mathematical Director

http://www.cybertester.com/ Cyber Tester Ltd.

----------------------------------------------------------------

"We must understand that technologies
like these are the way of the future."

----------------------------------------------------------------
----------------------------------------------------------------

http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5

"...... the challenges imply that a solution is built within the
framework of the existent CAS functions & built-in definitions."

----------------------------------------------------------------
----------------------------------------------------------------
From: Axel Vogt on
Vladimir Bondarenko wrote:
> Hello,
>
> Mathematica:
>
> PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
>
> Maple:
>
> Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
>
> Can you "elementarize" this ?

Maple 12 runs into bugs here.

a := -2304*ln(xi)*(xi^4+35*3^(1/2)*xi^3-61*xi^3-9*3^(1/2)*xi^2+
18*xi^2-3^(1/2)*xi-7*xi-4*3^(1/2)+7)
b := 1/3840*(15+15*I+(9+7*I)*3^(1/2))/
(-1+2*xi-I*3^(1/2))

Then for Int(a*b, xi=0..1) the symbolic and numerical solutions
are quite different, even with increased precision.
From: clicliclic on

Vladimir Bondarenko schrieb:
>
> Mathematica:
>
> PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
>
> Maple:
>
> Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
>
> Can you "elementarize" this ?
>

The zeta function part

ZETA(2,1/6) + 9*ZETA(2,1/3) - 9*ZETA(2,2/3) - ZETA(2,5/6)

98.44410402

may be simplified to

28*ZETA(2,1/3) - 56/3*pi^2

98.44410402

which corresponds to

-#i*SQRT(3)*(84*LI2((-1+SQRT(3)*#i)/2) + 14*pi^2/3)

98.44410402

Martin.
From: Vladimir Bondarenko on
On Aug 9, 12:42 am, cliclic...(a)freenet.de wrote:
> Vladimir Bondarenko schrieb:
>
>
>
>
>
>
>
> > Mathematica:
>
> > PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> > 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> > 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> > 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
>
> > Maple:
>
> > Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> > 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> > 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
>
> > Can you "elementarize" this ?
>
> The zeta function part
>
> ZETA(2,1/6) + 9*ZETA(2,1/3) - 9*ZETA(2,2/3) - ZETA(2,5/6)
>
> 98.44410402
>
> may be simplified to
>
> 28*ZETA(2,1/3) - 56/3*pi^2
>
> 98.44410402
>
> which corresponds to
>
> -#i*SQRT(3)*(84*LI2((-1+SQRT(3)*#i)/2) + 14*pi^2/3)
>
> 98.44410402
>
> Martin.

Oh, I suspect some definitions in Mathematica/Maple
Derive and could be different... 8-(

In fact, the above expressions in Mathematica/Maple
approximate to

57.32873750797116359667145471557897409239645761367...

Cheers, Vladimir
From: clicliclic on

Vladimir Bondarenko schrieb:
>
> On Aug 9, 12:42 am, cliclic...(a)freenet.de wrote:
> > Vladimir Bondarenko schrieb:
> >
> > > Mathematica:
> >
> > > PolyGamma[1, 1/6] + 9 PolyGamma[1, 1/3] -
> > > 9 PolyGamma[1, 2/3] - PolyGamma[1, 5/6] -
> > > 48 I Sqrt[3] PolyLog[2, ((2 + 3 I) - (1 + 2 I) Sqrt[3])/2] +
> > > 48 I Sqrt[3] PolyLog[2, (1 - 3/2 I) - (1/2 - I) Sqrt[3]]
> >
> > > Maple:
> >
> > > Psi(1,1/6)+9*Psi(1,1/3)-9*Psi(1,2/3)-Psi(1,5/6)-
> > > 48*I*sqrt(3)*polylog(2,1+3/2*I-(1/2+I)*sqrt(3))+
> > > 48*I*sqrt(3)*polylog(2,1-3/2*I+(-1/2+I)*sqrt(3))
> >
> > > Can you "elementarize" this ?
> >
> > The zeta function part
> >
> > ZETA(2,1/6) + 9*ZETA(2,1/3) - 9*ZETA(2,2/3) - ZETA(2,5/6)
> >
> > 98.44410402
> >
> > may be simplified to
> >
> > 28*ZETA(2,1/3) - 56/3*pi^2
> >
> > 98.44410402
> >
> > which corresponds to
> >
> > -#i*SQRT(3)*(84*LI2((-1+SQRT(3)*#i)/2) + 14*pi^2/3)
> >
> > 98.44410402
> >
> > Martin.
>
> Oh, I suspect some definitions in Mathematica/Maple
> Derive and could be different... 8-(
>
> In fact, the above expressions in Mathematica/Maple
> approximate to
>
> 57.32873750797116359667145471557897409239645761367...
>
> Cheers, Vladimir

Please explain the meaning of this part of your expression in terms
of Derive's DIGAMMA() or ZETA(). Am I wrong in identifying your
PolyGamma[n,q] = Psi(n,q) for n = 1, 2, 3, ... with
(-1)^(n+1)*n!*ZETA(n+1,q) ?

For DIGAMMA(1/6) + 9*DIGAMMA(1/3) - 9*DIGAMMA(2/3) - DIGAMMA(5/6), I
obtain -21.76559237 instead (but these are elementary anyway).

I will try to repair this tomorrow once I know what's what.

Martin.