From: Vladimir Bondarenko on 23 Jul 2010 22:49 Hello, Mathematica: (5 Hypergeometric2F1[-1/2, 1, 1/4, -1] - 4 Hypergeometric2F1[ 1/2, 1, 1/4, -1])/ (1 + 2^(7/4) EllipticF[ArcCsc[2^(1/4)], -1]) Maple: (5*hypergeom([-1/2, 1], [1/4], -1)- 4*hypergeom([ 1/2, 1], [1/4], -1))/ (1+2*2^(3/4)*EllipticF(1/2^(1/4),I)) ? Cheers, Vladimir Bondarenko Co-founder, CEO, Mathematical Director http://www.cybertester.com/ Cyber Tester Ltd. ---------------------------------------------------------------- "We must understand that technologies like these are the way of the future." ---------------------------------------------------------------- ---------------------------------------------------------------- http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 "...... the challenges imply that a solution is built within the framework of the existent CAS functions & built-in definitions." ---------------------------------------------------------------- ----------------------------------------------------------------
From: Axel Vogt on 24 Jul 2010 16:53 Vladimir Bondarenko wrote: > Hello, > > Mathematica: > > (5 Hypergeometric2F1[-1/2, 1, 1/4, -1] - > 4 Hypergeometric2F1[ 1/2, 1, 1/4, -1])/ > (1 + 2^(7/4) EllipticF[ArcCsc[2^(1/4)], -1]) > > Maple: > > (5*hypergeom([-1/2, 1], [1/4], -1)- > 4*hypergeom([ 1/2, 1], [1/4], -1))/ > (1+2*2^(3/4)*EllipticF(1/2^(1/4),I)) Numerical it is 3 (as a trivial observation). It would be more interesting to look at transformations for hypergeometrics like the reformulation 5*hypergeom([-1/2, 1],[1/4],-x)- 4*hypergeom([1/2, 1],[1/4],-x)- 3*4^(7/8)*hypergeom([1/4, 3/4],[5/4],-x) = 3 for x=1 Not that I have that. But googling for Vidunas, arxiv should give plenty of identities not being covered by MMA or Maple.
|
Pages: 1 Prev: applications of several complex variables Next: JSH: Prime gap equation consequences |