From: Alexandre Schmidt on
You need to carry out an analytic continuation in order to write a
(convergent) Hypergeometric2F1 in the region |z|>1.
The formulas are well-known, as you can see in

L.J.Slater, "Generalized Hypergeometric Functions",
Y.L.Luke, "Mathematical Functions and Their Approximations"
or even in Gradsteyn and Rhyzik "Table of Integrals and Series".

Best regards,
Alexandre Schmidt
UFF
Brazil

On Mar 2, 10:02 am, Christoph Lhotka <christoph.lho...(a)univie.ac.at>
wrote:
> sorry, but neither with V5, V6 or V7 I could reproduce your result. I get:
>
> In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]
>
> Sqrt[5]
> 10 + 9 Sqrt[5] ArcTan[-------]
> 2
> Out[1]= -------------------------------
> 45
>
> In[2]:= %//N
>
> Out[2]= 0.59836
>
> In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]
>
> Out[3]= 0.59836
>
> (the ArcTan instead of the ArcTanh)
>
> Another question: I remember a definition, where 2F1(a,b,c,x) is defined
> only for |x|<1. Does anybody know why / about the generalization?
>
> chr
>
>
>
> anguz...(a)ing.uchile.cl wrote:
> > This is very bad and disappointing...what about version 7 ..
> > Looks like the symbolic evaluation is messed up..
>
> > Mathematica 6.0 for Linux x86 (32-bit)
> > Copyright 1988-2008 Wolfram Research, Inc.
>
> > In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]
>
> > Sqrt[5]
> > 10 + 9 Sqrt[5] ArcTanh[-------]
> > =
2
> > Out[1]= -------------------------------
> > 45
>
> > In[2]:= %//N
>
> > Out[2]= 0.867836 - 0.702481 I
>
> > In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]
>
> > Out[3]= 0.59836
>
> > Atte. Andres Guzman
>
> > ----------------------------------------------------------------
> > This message was sent using IMP, the Internet Messaging Program.
>
> --
> Universit=E4t Wien || University of Vienna
> Institut f=FCr Astronomie || Institute for Astronomy
> T=FCrkenschanzstra=DFe 17 || Tuerkenschanzstrasse 17
> 1180 Wien || A-1180 Vienna
> 01 4277 51841 || 0043 1 4277 51841


First  |  Prev  | 
Pages: 1 2
Prev: Harmonic Numbers
Next: Select Maximum Value