From: anguzman on

This is very bad and disappointing...what about version 7 ..
Looks like the symbolic evaluation is messed up..

Mathematica 6.0 for Linux x86 (32-bit)
Copyright 1988-2008 Wolfram Research, Inc.

In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]

Sqrt[5]
10 + 9 Sqrt[5] ArcTanh[-------]
2
Out[1]= -------------------------------
45

In[2]:= %//N

Out[2]= 0.867836 - 0.702481 I

In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]

Out[3]= 0.59836



Atte. Andres Guzman

----------------------------------------------------------------
This message was sent using IMP, the Internet Messaging Program.


From: Roland Franzius on
anguzman(a)ing.uchile.cl schrieb:
> This is very bad and disappointing...what about version 7 ..
> Looks like the symbolic evaluation is messed up..
>
> Mathematica 6.0 for Linux x86 (32-bit)
> Copyright 1988-2008 Wolfram Research, Inc.
>
> In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]
>
> Sqrt[5]
> 10 + 9 Sqrt[5] ArcTanh[-------]
> 2
> Out[1]= -------------------------------
> 45
>
> In[2]:= %//N
>
> Out[2]= 0.867836 - 0.702481 I
>
> In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]
>
> Out[3]= 0.59836
>

The Hypergeometric 2F1(a,b,c,z) has logarithmic branch points at z=+-1.
That follows immediately using your expression by

In: TrigToExp[ArcTanh[x]]
Out: -(1/2) Log[1 - x] + 1/2 Log[1 + x]

Without assumptions you cannot use it for real |z|>1.
Probably you even don't know the actual meaning of the expression of yours.

Consider

In: Assuming[{x, y} > 1,
FullSimplify(a)Hypergeometric2F1[1/2, 2, 3/2, x + I y]]


Out: 1/2 (1/(1 - x - I y) + ArcTanh[Sqrt[x + I y]]/Sqrt[x + I y])

In: % /. {x -> -125/100, y -> 0} // N

Out: 0.59836

--

Roland Franzius






From: Bob Hanlon on

$Version

7.0 for Mac OS X x86 (64-bit) (February 19, 2009)

Hypergeometric2F1[1/2, 2, 3/2, -125/100]

(1/45)*(10 + 9*Sqrt[5]*
ArcTan[Sqrt[5]/2])

% // N

0.59836

Hypergeometric2F1[1/2, 2, 3/2, -1.25]

0.59836

Hypergeometric2F1[1/2, 2, 3/2, -125/100] -
Hypergeometric2F1[1/2, 2, 3/2, -1.25]

-1.1102230246251565*^-16


Bob Hanlon

---- anguzman(a)ing.uchile.cl wrote:

=============

This is very bad and disappointing...what about version 7 ..
Looks like the symbolic evaluation is messed up..

Mathematica 6.0 for Linux x86 (32-bit)
Copyright 1988-2008 Wolfram Research, Inc.

In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]

Sqrt[5]
10 + 9 Sqrt[5] ArcTanh[-------]
2
Out[1]= -------------------------------
45

In[2]:= %//N

Out[2]= 0.867836 - 0.702481 I

In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]

Out[3]= 0.59836



Atte. Andres Guzman



From: Christoph Lhotka on
sorry, but neither with V5, V6 or V7 I could reproduce your result. I get:

In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]

Sqrt[5]
10 + 9 Sqrt[5] ArcTan[-------]
2
Out[1]= -------------------------------
45

In[2]:= %//N

Out[2]= 0.59836

In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]

Out[3]= 0.59836

(the ArcTan instead of the ArcTanh)

Another question: I remember a definition, where 2F1(a,b,c,x) is defined
only for |x|<1. Does anybody know why / about the generalization?

chr



anguzman(a)ing.uchile.cl wrote:
> This is very bad and disappointing...what about version 7 ..
> Looks like the symbolic evaluation is messed up..
>
> Mathematica 6.0 for Linux x86 (32-bit)
> Copyright 1988-2008 Wolfram Research, Inc.
>
> In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]
>
> Sqrt[5]
> 10 + 9 Sqrt[5] ArcTanh[-------]
> 2
> Out[1]= -------------------------------
> 45
>
> In[2]:= %//N
>
> Out[2]= 0.867836 - 0.702481 I
>
> In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]
>
> Out[3]= 0.59836
>
>
>
> Atte. Andres Guzman
>
> ----------------------------------------------------------------
> This message was sent using IMP, the Internet Messaging Program.
>
>
>
>
>


--
Universit�t Wien || University of Vienna
Institut f�r Astronomie || Institute for Astronomy
T�rkenschanzstra�e 17 || Tuerkenschanzstrasse 17
1180 Wien || A-1180 Vienna
01 4277 51841 || 0043 1 4277 51841


From: anguzman on
I have seen now that Mathematica 7 gives the correct result.
Well, I found the inconsistency while I was trying to evaluate:

In = Assuming[A > 0 && B > 0 && b > 0,
Integrate[(A^2 + x^2)^(b), {x, 0, B}]]
Out = A^(-2 b) B Hypergeometric2F1[1/2, b, 3/2, -(B^2/A^2)]

An integral of real positive argument, the problem I exposed occurs with b=2.
If there are branch discontinuities, you have to know which branch
is selected in the evaluation though.
But the problem is that there needs to be an ArcTan instead of a ArcTanh.

Atte. Andres Guzman


Roland Franzius <roland.franzius(a)uos.de> ha escrito:

> anguzman(a)ing.uchile.cl schrieb:
>> This is very bad and disappointing...what about version 7 ..
>> Looks like the symbolic evaluation is messed up..
>>
>> Mathematica 6.0 for Linux x86 (32-bit)
>> Copyright 1988-2008 Wolfram Research, Inc.
>>
>> In[1]:= Hypergeometric2F1[1/2, 2, 3/2, -125/100]
>>
>> Sqrt[5]
>> 10 + 9 Sqrt[5] ArcTanh[-------]
>> 2
>> Out[1]= -------------------------------
>> 45
>>
>> In[2]:= %//N
>>
>> Out[2]= 0.867836 - 0.702481 I
>>
>> In[3]:= Hypergeometric2F1[1/2, 2, 3/2, -1.25]
>>
>> Out[3]= 0.59836
>>
>
> The Hypergeometric 2F1(a,b,c,z) has logarithmic branch points at z=+-1.
> That follows immediately using your expression by
>
> In: TrigToExp[ArcTanh[x]]
> Out: -(1/2) Log[1 - x] + 1/2 Log[1 + x]
>
> Without assumptions you cannot use it for real |z|>1.
> Probably you even don't know the actual meaning of the expression of yours.
>
> Consider
>
> In: Assuming[{x, y} > 1,
> FullSimplify(a)Hypergeometric2F1[1/2, 2, 3/2, x + I y]]
>
>
> Out: 1/2 (1/(1 - x - I y) + ArcTanh[Sqrt[x + I y]]/Sqrt[x + I y])
>
> In: % /. {x -> -125/100, y -> 0} // N
>
> Out: 0.59836
>
> --
>
> Roland Franzius
>
>
>
>
>
>
>



----------------------------------------------------------------
This message was sent using IMP, the Internet Messaging Program.


 |  Next  |  Last
Pages: 1 2
Prev: Harmonic Numbers
Next: Select Maximum Value