From: WM on
On 18 Dez., 15:12, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:

>  > > Aha, you are clearly a mindreader.  Well, as far as I know mindreading
>  > > is not part of mathematics.  Anyhow, I can think of numbers larger than
>  > > that path.
>  > > But that is completely irrelevant.  I am able to think about a set that
>  > > contains all natural numbers, you apparently are not.
>  >
>  > How do you know that without confirming it by thinking the last too?
>
> Why need I to think about a last one (which there isn't) to be able to think
> about a set that contains all natural numbers?  Apparently you have some
> knowledge about how my mind works that I do not have.

Yes. A very convincing and often required proof of completenes of a
linear set is to know the last element. T talk about all in case there
is no last is silly.
>
>  > >  > > Right, but there is no finite initial segment that contains them all.
>  > >  >
>  > >  > That is pure opinion, believd by the holy bible (Dominus regnabit in
>  > >  > aeternum et ultra. [2. Buch Moses: Exodus 15 Vers 18]) or forced upon
>  > >  > us by the men-made axiom of infinity.
>  > >
>  > > Sorry, I have no knowledge of the bible.  But live without that axiom when
>  > > you can't stomach it.  And do not attack mathematicians who live with that
>  > > axiom.
>  >
>  > To live with that axiom does not create uncountability. See the proof
>  > here:
>  >http://groups.google.com/group/sci.logic/browse_frm/thread/46fa18c8bb....
>
> Where is the proof there?  I see only you writing a bit of nonsense and two
> rebuttals.

One of the rebuttals has meanwhile been changed. Peter Webb
recognized: It is true that you cannot show pi as a finite decimal,
but you can't show 1/3 as a finite decimal either.

Just what I said.
>
>  > >  > The tree contains all paths that can be constructed by nodes, using
>  > >  > the axiom of infinity. Which one would be missing?
>  > >
>  > > The infinite paths because you stated a priori that your tree did not
>  > > contain infinite paths.  So it is impossible to construct in your tree
>  > > infinite paths by the axiom of infinity.
>  >
>  > The axiom of infinity establishes the set N from finite numbers.
>
> It establishes the *existence* of a set N of finite numbers.

What else should be established?
>
>  > It establishes the infinite paths as well in my tree from finite
>  > paths.
>
> No.  That is impossible because you stated that the paths were finite.
> What it *does* establish is the extistence of a set P of finite paths.

It is rather silly to argue about the uncountability of the set of
paths. Only minds completely disformed by set theory could try to
defend the obviously false position that there were uncountably many
paths.

But "10 Questions" will give you the answer why there are not
uncountably many paths. There are no infinite decimal expansions of
real numbers. There are not due paths in the tree.

It is as impossible to express any real number by an infinite decimal
expansion as it is impossible to express 0 by a unit fraction. The
rest will be explained in "10 Questions". Therefore I will stop with
this topic here.

Regards, WM
From: WM on
On 18 Dez., 15:19, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
> In article <2cd3c08a-a072-4ef5-bc0b-f0aaa9126...(a)a21g2000yqc.googlegroups..com> WM <mueck...(a)rz.fh-augsburg.de> writes:
>  > On 17 Dez., 15:08, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
>  > > In article <6a57309a-a136-430c-a718-e38518c65...(a)q16g2000vbc.googlegroups=
>  > .com> WM <mueck...(a)rz.fh-augsburg.de> writes:
>  > >  > On 16 Dez., 03:44, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
>  > >  > >  > ({1} U {1, 2} U {1, 2, 3} U ... = ({1} U {1, 2} U {1, 2, 3} U
>  > >  > >  > U {1, 2, 3, ...}
>  > >  >
>  > >  > That is a matter of taste.
>  > >
>  > > No, it is a matter of convention.  In mathematics
>  > >     a, b, c, ..., z
>  > > means a, b, c, continue this way until you reach z.  But starting
>  > >     {1}, {1, 2}, {1, 2, 3}
>  > > and going on you never reach
>  > >     {1, 2, 3, ...}
>  >
>  > That is true. Therefore it does not exist.
>
> That you can not get there step by step does not mean that it does not
> exist.

That you cannot get step by step to 1/0 does not mean that it does not
exist?
>
>  >                                            However, see Cantor,
>  > collected works, p 445:
>  > 0, 1, 2, 3, ... w_0, w_0 + 1, ..., gamma, ...,
>  > He seems to reach far more.
>
> Right, he uses a convention that is no longer used.

Wrong, it is used presently, for instance by myself.
>
>  > >  > > A sequence of paths is not a path.
>  > >  >
>  > >  > But a union of paths is.
>  > >
>  > > No.  Suppose we have the paths 0.000 and 0.100, what is their union? And
>  > > is it a path?
>  >
>  > No. But the union contains two paths.
>
> Wrong.  If we look at the paths as sets, they are sets of nodes.  Their
> union is a set of nodes, not a set of paths.  And as a set of nodes we
> can form from them seven different paths.

Wrong. The nodes of two paths give exactly two paths. But as I already
said, it is so silly to argue about the uncountability of the paths in
the tree that I will stop it here.
>  >
>  > Let every finite path of every infinite path be mapped on the elements
>  > of omega. That was simple.
>
> By your statements infinite paths do not exist.  But pray give such a
> mapping.  Until now you have only asserted that such a mapping exists
> without showing that.

Do you accept the mapping from omega on SUM{k = 1 to n} 3*10^-k yields
the infinite decimal expansion of 1/3?

Regards, WM
From: WM on
On 18 Dez., 15:22, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
> In article <dd852490-e622-4bc4-b858-dfcc3b142...(a)l13g2000yqb.googlegroups..com> WM <mueck...(a)rz.fh-augsburg.de> writes:
>  > On 17 Dez., 20:49, Virgil <Vir...(a)home.esc> wrote:
> ...
>  > >  WM <mueck...(a)rz.fh-augsburg.de> wrote:
>  > > > > No.  Suppose we have the paths 0.000 and 0.100, what is their union?
>  > > > > And is it a path?
>  > >
>  > > > No. But the union contains two paths. And an infinite union of that
>  > > > kind may contain the path 0.111...
>  > >
>  > > So according to WM a union of sets may contain an object not contained
>  > > in any of the sets being unioned.
>  >
>  > For paths and initial segments to contain and to be is the same.
>
> Eh?  paths contain nodes and initial segments contain numbers.
> But be aware that you use the word 'contains' with two different meanings
> at different times.

For paths we have: Paths contain initial segments and paths are
initial segments.
>
>  > For paths and initial segments to contain and to be is the same. In
>  > fact:
>  > {1} U {1, 2} U {1, 2, 3} U ... = {1, 2, 3, ...}
>  > and also
>  > {1} U {1, 2} U {1, 2, 3} U ... U {1, 2, 3, ...} = {1, 2, 3, ...}.
>
> In the mathematical sense the union contains numbers, not sets.

The union contains subsets.
>
>  > This is so according to set theory. Of course it is rubbish.
>
> Well, if you want to use terminology in a different meaning than standard,
> of course.

To contain as a subset is not correct in English?

Regards, WM
From: Virgil on
In article
<2fac8bb1-4c90-4421-b559-1ea7f0301d4f(a)e27g2000yqd.googlegroups.com>,
WM <mueckenh(a)rz.fh-augsburg.de> wrote:

> On 18 Dez., 15:12, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
>
> > �> > Aha, you are clearly a mindreader. �Well, as far as I know mindreading
> > �> > is not part of mathematics. �Anyhow, I can think of numbers larger
> > than
> > �> > that path.
> > �> > But that is completely irrelevant. �I am able to think about a set
> > that
> > �> > contains all natural numbers, you apparently are not.
> > �>
> > �> How do you know that without confirming it by thinking the last too?
> >
> > Why need I to think about a last one (which there isn't) to be able to
> > think
> > about a set that contains all natural numbers? �Apparently you have some
> > knowledge about how my mind works that I do not have.
>
> Yes. A very convincing and often required proof of completenes of a
> linear set is to know the last element.

Knowing the allegedly last element in a set does not work unless one has
imposed a linear ordering on the set, which is in no wise necessary for
sethood. Which is the "last" point of the set of points on a circle?


> One of the rebuttals has meanwhile been changed. Peter Webb
> recognized: It is true that you cannot show pi as a finite decimal,
> but you can't show 1/3 as a finite decimal either.
>
> Just what I said.
> >
> > �> > �> The tree contains all paths that can be constructed by nodes, using
> > �> > �> the axiom of infinity. Which one would be missing?
> > �> >
> > �> > The infinite paths because you stated a priori that your tree did not
> > �> > contain infinite paths. �So it is impossible to construct in your tree
> > �> > infinite paths by the axiom of infinity.
> > �>
> > �> The axiom of infinity establishes the set N from finite numbers.
> >
> > It establishes the *existence* of a set N of finite numbers.
>
> What else should be established?
> >
> > �> It establishes the infinite paths as well in my tree from finite
> > �> paths.
> >
> > No. �That is impossible because you stated that the paths were finite.
> > What it *does* establish is the extistence of a set P of finite paths.
>
> It is rather silly to argue about the uncountability of the set of
> paths.

Then stop doing it. There is a perfectly adequate proof that one cannot
have a list of paths that contains all paths, or , equivalently, one
cannot have a list of all subset of N.
Since being capable of being listed is a necessary requirement for
countability, that proof eliminates countability for the set of all
paths s well as for the power set of any infinite set.

> Only minds completely disformed by set theory could try to
> defend the obviously false position that there were uncountably many
> paths.

Minds thus "deformed" by set theory are often capable of creating valid
proofs that WM not only cannot create but also cannot even follow.
>
> But "10 Questions" will give you the answer why there are not
> uncountably many paths. There are no infinite decimal expansions of
> real numbers. There are not due paths in the tree.

1 = 1.000... is a real number with an infinite decimal expansion, and in
ZF there are infinitely many more of them.

I know not what a "due path" is, but in my infinite binary tree, whose
nodes are the members of N, every path is an infinite subset of N, and
there are more of them than even WM can count.

>
> It is as impossible to express any real number by an infinite decimal
> expansion as it is impossible to express 0 by a unit fraction. The
> rest will be explained in "10 Questions". Therefore I will stop with
> this topic here.

Then in WM's world, 1.000... is not a real number.

Odd of him, but he has always been odd.
From: Quaestor on
In article
<9ad63bf1-549b-4822-bf86-839dd7c64d58(a)j4g2000yqe.googlegroups.com>,
WM <mueckenh(a)rz.fh-augsburg.de> wrote:

> On 18 Dez., 15:19, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
> > In article
> > <2cd3c08a-a072-4ef5-bc0b-f0aaa9126...(a)a21g2000yqc.googlegroups.com> WM
> > <mueck...(a)rz.fh-augsburg.de> writes:
> > �> On 17 Dez., 15:08, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
> > �> > In article
> > <6a57309a-a136-430c-a718-e38518c65...(a)q16g2000vbc.googlegroups=
> > �> .com> WM <mueck...(a)rz.fh-augsburg.de> writes:
> > �> > �> On 16 Dez., 03:44, "Dik T. Winter" <Dik.Win...(a)cwi.nl> wrote:
> > �> > �> > �> ({1} U {1, 2} U {1, 2, 3} U ... = ({1} U {1, 2} U {1, 2, 3} U
> > �> > �> > �> U {1, 2, 3, ...}
> > �> > �>
> > �> > �> That is a matter of taste.
> > �> >
> > �> > No, it is a matter of convention. �In mathematics
> > �> > � � a, b, c, ..., z
> > �> > means a, b, c, continue this way until you reach z. �But starting
> > �> > � � {1}, {1, 2}, {1, 2, 3}
> > �> > and going on you never reach
> > �> > � � {1, 2, 3, ...}
> > �>
> > �> That is true. Therefore it does not exist.
> >
> > That you can not get there step by step does not mean that it does not
> > exist.
>
> That you cannot get step by step to 1/0 does not mean that it does not
> exist?

That's what he said! That's what he said! He said that!
> >
> > �> � � � � � � � � � � � � � � � � � � � � � �However, see Cantor,
> > �> collected works, p 445:
> > �> 0, 1, 2, 3, ... w_0, w_0 + 1, ..., gamma, ...,
> > �> He seems to reach far more.
> >
> > Right, he uses a convention that is no longer used.
>
> Wrong, it is used presently, for instance by myself.
> >
> > �> > �> > A sequence of paths is not a path.
> > �> > �>
> > �> > �> But a union of paths is.
> > �> >
> > �> > No. �Suppose we have the paths 0.000 and 0.100, what is their union?
> > And
> > �> > is it a path?
> > �>
> > �> No. But the union contains two paths.
> >
> > Wrong. �If we look at the paths as sets, they are sets of nodes. �Their
> > union is a set of nodes, not a set of paths. �And as a set of nodes we
> > can form from them seven different paths.
>
> Wrong. The nodes of two paths give exactly two paths. But as I already
> said, it is so silly to argue about the uncountability of the paths in
> the tree that I will stop it here.

Then WM has been silly for years. And will no doubt continue being silly.
At least as long as he fails to comprehend that Cantor's several proofs
of uncountability of some sets trumps WM's lack of proofs to the
contrary.

> > �> Let every finite path of every infinite path be mapped on the elements
> > �> of omega. That was simple.
> >
> > By your statements infinite paths do not exist. �But pray give such a
> > mapping. �Until now you have only asserted that such a mapping exists
> > without showing that.
>
> Do you accept the mapping from omega on SUM{k = 1 to n} 3*10^-k yields
> the infinite decimal expansion of 1/3?

It merely creates an infinite sequence of rationals or finite decimals
numerals whose numerical values converge to the number whose rational
numeral is "1/3".