Prev: Mathematica Cluster Integration + SGE
Next: List Manipulation: Conditionally changing y value when x value meets some criteria
From: Fischer, Egil on 8 Apr 2010 08:03 Hi, With Mathematica it is easy to obtain the Eigenvalues of a (large) matrix (Function Eigenvalues). Currently I am writing a paper and I would like to know which algorithm is used by Mathematica for a n x n matrix (n >= 5). The eigenvalues cannot be determined analytical, thus I am interested in which numerical method Mathematica uses. Using Options I can only find that the Method is Automatic (which does not help). Kind regards, ir. Egil A.J. Fischer Researcher Quantitative Veterinary Epidemiology and Risk Analysis (QVE-RA) Central Veterinary Institute of Wageningen UR Absent on fridays P.O.Box 65, 8200 AB Lelystad. Visiting address: Houtribweg 39, Lelystad. Phone: +31 (0)320 238370 e-mail: egil.fischer(a)wur.nl <blocked::mailto:egil.fischer(a)wur.nl> internet: www.cvi.wur.nl <blocked::http://www.cvi.wur.nl/> KvK: de Animal Sciences Group is bij de Kamer van Koophandel in Lelystad geregistreerd als 'ID-Lelystad, Instituut voor Dierhouderij en Diergezondheid B.V.' onder nummer 39073054 KvK: het Centraal Veterinair Instituut is bij de Kamer van Koophandel in Arnhem als rechtspersoon geregistreerd als 'Stichting DLO' onder nummer 09098104 <blocked::http://www.disclaimer-nl.wur.nl/> www.disclaimer-nl.wur.n <blocked::http://www.disclaimer-nl.wur.nl/> l P Please consider the environment before printing this e-mail
From: Mike Bryniarski on 9 Apr 2010 03:33
Actually Mathematica can in some sense compute eigenvalues of larger matrices analytically, but it has to return them as a Root expressions. Example: m ={{10, 96, 50, 62, 13, 99, 44}, {78, 41, 73, 69, 9, 69, 58}, {9, 53, 97, 27, 95, 15, 97}, {22, 60, 100, 84, 28, 76, 33}, {56, 16, 62, 45, 47, 64, 65}, {8, 73, 71, 33, 44, 61, 20}, {30, 90, 98, 60, 31, 29, 96}}; Eigenvalues[m] but when working with numerical data I believe Eigenvalues calls LAPACK to do the computation. When using sparse arrays Eigenvalues uses Arnoldi iteration from ARPACK. Some information on how Mathematica does things is available at: http://reference.wolfram.com/mathematica/note/SomeNotesOnInternalImplementation.html for more specific information than this you would need to look at documentation for the implimentation of LAPACK or ARPACK -Mike On Apr 8, 8:03 am, "Fischer, Egil" <egil.fisc...(a)wur.nl> wrote: > Hi, > > With Mathematica it is easy to obtain the Eigenvalues of a (large) > matrix (Function Eigenvalues). Currently I am writing a paper and I > would like to know which algorithm is used by Mathematica for a n x n > matrix (n >= 5). The eigenvalues cannot be determined analytical, thus I > am interested in which numerical method Mathematica uses. Using Options > I can only find that the Method is Automatic (which does not help). > > Kind regards, > > ir. Egil A.J. Fischer > Researcher > Quantitative Veterinary Epidemiology and Risk Analysis (QVE-RA) > Central Veterinary Institute of Wageningen UR > Absent on fridays > P.O.Box 65, 8200 AB Lelystad. > Visiting address: Houtribweg 39, Lelystad. > Phone: +31 (0)320 238370 > e-mail: egil.fisc...(a)wur.nl <blocked::mailto:egil.fisc...(a)wur.nl> > internet:www.cvi.wur.nl<blocked::http://www.cvi.wur.nl/> > > KvK: de Animal Sciences Group is bij de Kamer van Koophandel in Lelystad > geregistreerd als 'ID-Lelystad, Instituut voor Dierhouderij en > Diergezondheid B.V.' onder nummer 39073054 > KvK: het Centraal Veterinair Instituut is bij de Kamer van Koophandel in > Arnhem als rechtspersoon geregistreerd als 'Stichting DLO' onder nummer > 09098104 > <blocked::http://www.disclaimer-nl.wur.nl/>www.disclaimer-nl.wur.n > <blocked::http://www.disclaimer-nl.wur.nl/> l > > P Please consider the environment before printing this e-mail |