Prev: Curved edges for GraphPlot?
Next: LaTex to Mathematica
From: Grischika on 24 Jul 2008 04:54 On 23 =C9=C0=CC, 13:26, Valeri Astanoff <astan...(a)gmail.com> wrote: > Good day, > > Neither Mathematica 6 nor anyone here can integrate this: > > In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > > In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[2]= 6.72288 > > I know the exact result: > > In[3]:= =9A(1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] - > =9A =9A =9A =9A 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])* > =9A =9A =9A =9A EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])])= )//N > Out[3]= 6.72288 > > but I would like to prove it. > > Thanks in advance to the samaritan experts... > > V.Astanoff Hello. You can try to take indefinite integral: eq=Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], t] Here Mathematica gives you an answer: ((2/5 + (4*I)/5)*Cos[t/2]^4*((2 + I)*Sqrt[1 - 2*I]* EllipticE[I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -3/5 + (4*I)/5]* Sec[t/2]^2*Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]* Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] - I*((6 - 2*I)*Sqrt[1 - 2*I]*EllipticF[ I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -3/5 + (4*I)/5]*Sec[t/2]^2* Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] - 4*Sqrt[1 - 2*I]*EllipticPi[1/5 + (2*I)/5, I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -3/5 + (4*I)/5]*Sec[t/2]^2* Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] + (2 + I)*(Tan[t/2] + 2*Tan[t/2]^3 + 5*Tan[t/2]^5))))/ Sqrt[5 - 4*Cos[t] + Cos[2*t]] Then find Limits: Limit[eq, t ->0] gives 0, Limit[eq, t -> Pi] gives (2/5 + I/5)*Sqrt[2/5 + (4*I)/5]* ((1 + 2*I)*Sqrt[5]*EllipticE[-3/5 - (4*I)/5] - 5*EllipticE[-3/5 + (4*I)/5] + (4 - 4*I)*Sqrt[5]* EllipticK[-3/5 - (4*I)/5] - (10 - 10*I)*EllipticK[8/5 - (4*I)/5] - (4 + 8*I)*EllipticPi[1/5 + (2*I)/5, -3/5 + (4*I)/5] - 4*Sqrt[5]*EllipticPi[1 - 2*I, -3/5 - (4*I)/5]) so, the result is N@% -6.72287972344033 - 9.947771772989*^-15*I The problem only with the sign of result.
From: Bob F on 24 Jul 2008 05:04 On Jul 23, 4:26 am, Valeri Astanoff <astan...(a)gmail.com> wrote: > Good day, > > Neither Mathematica 6 nor anyone here can integrate this: > > In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > > In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[2]= 6.72288 > > I know the exact result: > > In[3]:= (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] - > 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])* > EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])])= )//N > Out[3]= 6.72288 > > but I would like to prove it. > > Thanks in advance to the samaritan experts... > > V.Astanoff You can use the TrigExpand[] function for the Cos[2t] to get the equivalent Cos[t]^2 - Sin[t]^2, and if you do this Mathematica 6.0.3 on a Mac comes up with 1/5 Sqrt[2 + 4 I] (-5 I EllipticE[-(3/5) - (4 I)/5] + (2 + I) Sqrt[5] EllipticE[-(3/5) + (4 I)/5] - (12 - 4 I) EllipticK[-(3/5) - (4 I)/5] + (6 - 2 I) Sqrt[5] EllipticK[8/5 - (4 I)/5] + 4 I Sqrt[5] EllipticPi[1/5 + (2 I)/5, -(3/5) + (4 I)/5] + (8 + 4 I) EllipticPi[1 - 2 I, -(3/5) - (4 I)/5]) The equivalence to your expression is left up to you...but this does evaluate numerically to the same as what you had. -Bob
From: Jens-Peer Kuska on 24 Jul 2008 05:05 Hi, expr = 5 - 4*Cos[t] + Cos[2*t] // TrigExpand Integrate[Sqrt[expr], {t, 0, Pi}] ?? Regards Jens Valeri Astanoff wrote: > Good day, > > Neither Mathematica 6 nor anyone here can integrate this: > > In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > > In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[2]= 6.72288 > > I know the exact result: > > In[3]:= (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] - > 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])* > EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])]))//N > Out[3]= 6.72288 > > but I would like to prove it. > > Thanks in advance to the samaritan experts... > > > V.Astanoff >
From: Valeri Astanoff on 25 Jul 2008 06:14
On 24 juil, 10:53, "David W.Cantrell" <DWCantr...(a)sigmaxi.net> wrote: [...] Good day, Thank you, David (along with Alois, Kevin & Grischka) for your advice and suggestions. Though I still wonder why (1/5)*Sqrt[2+4*I]*(-5*I*EllipticE[-(3/5)-(4*I)/5]+ (2+I)*Sqrt[5]*EllipticE[-(3/5)+(4*I)/5]- (12-4*I)*EllipticK[-(3/5)-(4*I)/5]+ (6-2*I)*Sqrt[5]*EllipticK[8/5-(4*I)/5]+ 4*I*Sqrt[5]*EllipticPi[1/5+(2*I)/5,-(3/5)+(4*I)/5]+ (8+4*I)*EllipticPi[1-2*I,-(3/5)-(4*I)/5]) doesn't fullsimplifies to (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5-Sqrt[5])]- 10*EllipticK[(1/10)*(5-Sqrt[5])]+(5+3*Sqrt[5])* EllipticPi[(1/10)*(5-3*Sqrt[5]),(1/10)*(5-Sqrt[5])])) (I have to say I'm not very familiar with the Elliptics!) Thanks anyway Valeri |