From: Valeri Astanoff on
Good day,

Neither Mathematica 6 nor anyone here can integrate this:

In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]

In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
Out[2]= 6.72288

I know the exact result:

In[3]:= (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] -
10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])*
EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])]))//N
Out[3]= 6.72288

but I would like to prove it.

Thanks in advance to the samaritan experts...


V.Astanoff

From: Alois Steindl on
Hello,
If I ask Mathematica 6.0.2.1 to
Integrate[Simplify[Sqrt[5 - 4*Cos[t] + Cos[2*t]]], {t, 0, Pi}]
it gives me
1/5 Sqrt[
2 + 4 I] (-5 I EllipticE[-(3/5) - (4 I)/5] + (2 + I) Sqrt[5]
EllipticE[-(3/5) + (4 I)/5] - (12 - 4 I) EllipticK[-(3/5) - (
4 I)/5] + (6 - 2 I) Sqrt[5] EllipticK[8/5 - (4 I)/5] +
4 I Sqrt[5]
EllipticPi[
1/5 + (2 I)/5, -(3/5) + (4 I)/5] + (8 + 4 I) EllipticPi[
1 - 2 I, -(3/5) - (4 I)/5])
Taking N[%] gives
6.72288+ 6.52169*10^-15 I

I am wondering, why the Simplify helps, because
Simplify[Sqrt[5 - 4*Cos[t] + Cos[2*t]]]
just returns
Sqrt[5 - 4 Cos[t] + Cos[2 t]].

Best wishes
Alois

--
Alois Steindl, Tel.: +43 (1) 58801 / 32558
Inst. for Mechanics and Mechatronics Fax.: +43 (1) 58801 / 32598
Vienna University of Technology, A-1040 Wiedner Hauptstr. 8-10

From: Grischika on
On 23 =C9=C0=CC, 13:26, Valeri Astanoff <astan...(a)gmail.com> wrote:
> Good day,
>
> Neither Mathematica 6 nor anyone here can integrate this:
>
> In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
> Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
>
> In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
> Out[2]= 6.72288
>
> I know the exact result:
>
> In[3]:= =9A(1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] -
> =9A =9A =9A =9A 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])*
> =9A =9A =9A =9A EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])])=
)//N
> Out[3]= 6.72288
>
> but I would like to prove it.
>
> Thanks in advance to the samaritan experts...
>
> V.Astanoff

Or even beter
eq = Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi/2}] +
Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, Pi/2, Pi}];

FullSimplify[eq]

Out:
(Sqrt[2 + 4*I]*((-5*I)*EllipticE[-3/5 - (4*I)/5] +
(2 + I)*Sqrt[5]*EllipticE[-3/5 + (4*I)/5] -
(12 - 4*I)*EllipticK[-3/5 - (4*I)/5] + (6 - 2*I)*Sqrt[5]*
EllipticK[8/5 - (4*I)/5] + (4*I)*Sqrt[5]*EllipticPi[1/5 + (2*I)/
5,
-3/5 + (4*I)/5] + (8 + 4*I)*EllipticPi[1 - 2*I, -3/5 - (4*I)/
5]))/
5

In[]=N@%
Out:
6.72288+ 1.05693*10^-14* I

Moreover, you can replace Cos[2t]->Cos[t]^2-Sin[t]^2

so

Integrate[
Sqrt[5 - 4*Cos[t] + Cos[2*t]] /. Cos[2 t] -> Cos[t]^2 - Sin[t]^2, {t,
0, Pi}];

gives result as above
6.72288+ 8.76799*10^-15 I

And the last solution is may be the best one:

Integrate[ TrigExpand/@Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t,0, Pi}];

From: Kevin J. McCann on
I actually get:

1/5 Sqrt[2+4 I] (-5 I EllipticE[-(3/5)-(4 I)/5]+(2+I) Sqrt[5]
EllipticE[-(3/5)+(4 I)/5]-(12-4 I) EllipticK[-(3/5)-(4 I)/5]+(6-2 I)
Sqrt[5] EllipticK[8/5-(4 I)/5]+4 I Sqrt[5] EllipticPi[1/5+(2
I)/5,-(3/5)+(4 I)/5]+(8+4 I) EllipticPi[1-2 I,-(3/5)-(4 I)/5])

which evaluates to your numerical answer below,

Valeri Astanoff wrote:
> Good day,
>
> Neither Mathematica 6 nor anyone here can integrate this:
>
> In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
> Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
>
> In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
> Out[2]= 6.72288
>
> I know the exact result:
>
> In[3]:= (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] -
> 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])*
> EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])]))//N
> Out[3]= 6.72288
>
> but I would like to prove it.
>
> Thanks in advance to the samaritan experts...
>
>
> V.Astanoff
>

From: David W.Cantrell on
Valeri Astanoff <astanoff(a)gmail.com> wrote:
> Good day,
>
> Neither Mathematica 6 nor anyone here can integrate this:
>
> In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
> Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]

Actually, we can use Mathematica 6 to integrate that.

In[9]:= indef = Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], t]

Out[9]= ((2/5 + (4*I)/5)*Sqrt[5 - 4*Cos[t] + Cos[2*t]]*((2 + I)*Sqrt[1 -
2*I]* EllipticE[I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -(3/5) + (4*I)/5]*(1 +
Tan[t/2]^2)*Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] -
I*((6 - 2*I)*Sqrt[1 - 2*I]*EllipticF[I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]],
-(3/5) + (4*I)/5]*(1 + Tan[t/2]^2)*Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 +
(1 + 2*I)*Tan[t/2]^2] - 4*Sqrt[1 - 2*I]*EllipticPi[1/5 + (2*I)/5,
I*ArcSinh[Sqrt[1 - 2*I]*Tan[t/2]], -(3/5) + (4*I)/5]*(1 +
Tan[t/2]^2)*Sqrt[1 + (1 - 2*I)*Tan[t/2]^2]*Sqrt[1 + (1 + 2*I)*Tan[t/2]^2] +
(2 + I)*(Tan[t/2] + 2*Tan[t/2]^3 + 5*Tan[t/2]^5))))/((1 + Cos[t])*Sqrt[(5 -
4*Cos[t] + Cos[2*t])/(1 + Cos[t])^2]*(1 + Tan[t/2]^2)*Sqrt[2 + 4*Tan[t/2]^2
+ 10*Tan[t/2]^4])

In[10]:= FullSimplify[
Limit[indef, t -> Pi, Direction -> 1] - (indef /. t -> 0)]

Out[10]= (1/5)*Sqrt[2 + 4*I]*(-5*I*EllipticE[-(3/5) - (4*I)/5] +
(2 + I)*Sqrt[5]*EllipticE[-(3/5) + (4*I)/5] -
(12 - 4*I)*EllipticK[-(3/5) - (4*I)/5] +
(6 - 2*I)*Sqrt[5]*EllipticK[8/5 - (4*I)/5] +
4*I*Sqrt[5]*EllipticPi[1/5 + (2*I)/5, -(3/5) + (4*I)/5] +
(8 + 4*I)*EllipticPi[1 - 2*I, -(3/5) - (4*I)/5])

In[11]:= N[%]

Out[11]= 6.722879723440325 + 1.0534455252564358*^-14*I

Of course I readily agree that Out[10] is not as nice in appearance as your
In[3] below. (Nobody who works much with Mathematica and elliptic integrals
would be surprised by that.) Nonetheless, Out[10] is a correct answer.

Best regards,
David W. Cantrell

> In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}]
> Out[2]= 6.72288
>
> I know the exact result:
>
> In[3]:= (1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] -
> 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])*
> EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])]))//N
> Out[3]= 6.72288
>
> but I would like to prove it.
>
> Thanks in advance to the samaritan experts...
>
> V.Astanoff

 |  Next  |  Last
Pages: 1 2
Prev: Curved edges for GraphPlot?
Next: LaTex to Mathematica