From: Artur on 26 Dec 2009 19:11 P.S. I'm apologize but I don't know how to force this condition in Mathematica variable "a" have to be root of polynomial order not higher as 4 That finding Mathematica solution: {Root[93729137781599188892101109375 + 694786929294636041346875*x - 7512992033452287500*x^2 - 667145231722500*x^3 - 2495181500*x^4 + 29880*x^5 + x^6],k=-2,n=-1 have too high degree of polynomial for "a" Artur Artur pisze: > Dear Mathematica Gurus, > Who have idea how to change my procedure to find any resolution > following problem in reasonable time: > > FindInstance[ > a^6 - 5000 a^5 k^4 + 15625000 a^4 k^8 - 39062500000 a^3 k^12 + > 61035156250000 a^2 k^16 - 346851348876953125 a k^20 + > 574052333831787109375 k^24 - 152587890625 a^3 k^11 n + > 381469726562500 a^2 k^15 n - 715255737304687500 a k^19 n + > 1192092895507812500000 k^23 n + 25000 a^5 k^2 n^2 - > 117187500 a^4 k^6 n^2 + 183105468750 a^3 k^10 n^2 - > 274658203125000 a^2 k^14 n^2 + 95367431640625000 a k^18 n^2 + > 2740025520324707031250 k^22 n^2 + 5000 a^5 k n^3 - > 34375000 a^4 k^5 n^3 + 23437500000 a^3 k^9 n^3 - > 1912231445312500 a^2 k^13 n^3 + 4634094238281250000 a k^17 n^3 + > 4118859767913818359375 k^21 n^3 - 120 a^5 n^4 + > 101281250 a^4 k^4 n^4 - 787626953125 a^3 k^8 n^4 - > 172827148437500 a^2 k^12 n^4 + 3451194763183593750 a k^16 n^4 + > 6292783260345458984375 k^20 n^4 + 66406250 a^4 k^3 n^5 - > 616455078125 a^3 k^7 n^5 + 256347656250000 a^2 k^11 n^5 + > 6629085540771484375 a k^15 n^5 + > 27122914791107177734375 k^19 n^5 - 2500000 a^4 k^2 n^6 - > 1519921875000 a^3 k^6 n^6 + 433349609375000 a^2 k^10 n^6 + > 5464096069335937500 a k^14 n^6 + > 38636028766632080078125 k^18 n^6 - 20031250 a^4 k n^7 - > 341732421875 a^3 k^5 n^7 - 1894716796875000 a^2 k^9 n^7 + > 8129505920410156250 a k^13 n^7 + > 93564096450805664062500 k^17 n^7 + 3131000 a^4 n^8 - > 156031718750 a^3 k^4 n^8 - 9313589208984375 a^2 k^8 n^8 + > 29971120880126953125 a k^12 n^8 + > 81764254665374755859375 k^16 n^8 - 311220703125 a^3 k^3 n^9 - > 5139099121093750 a^2 k^7 n^9 + 20748748779296875000 a k^11 n^9 + > 58457677841186523437500 k^15 n^9 - 31638281250 a^3 k^2 n^10 - > 1204147216796875 a^2 k^6 n^10 + > 25867360687255859375 a k^10 n^10 + > 97581827449798583984375 k^14 n^10 - 135380390625 a^3 k n^11 + > 121599628906250 a^2 k^5 n^11 + 10643425646972656250 a k^9 n^11 + > 95619381858825683593750 k^13 n^11 - 12457191250 a^3 n^12 - > 465429111718750 a^2 k^4 n^12 + 7125597748291015625 a k^8 n^12 + > 176131518226318359375000 k^12 n^12 - > 1778971484375000 a^2 k^3 n^13 + 15609765167236328125 a k^7 n^13 + > 123960684261322021484375 k^11 n^13 - > 427022263671875 a^2 k^2 n^14 + 5523702651367187500 a k^6 n^14 + > 62895859558105468750000 k^10 n^14 - 52864657812500 a^2 k n^15 + > 5566817182763671875 a k^5 n^15 + > 69470368091003417968750 k^9 n^15 + 3181330525000 a^2 n^16 + > 755323840091796875 a k^4 n^16 + > 50732234374265136718750 k^8 n^16 + > 642590379882812500 a k^3 n^17 + > 80834913409423828125000 k^7 n^17 + > 887537465068359375 a k^2 n^18 + > 35437872300158691406250 k^6 n^18 - 104724578519531250 a k n^19 + > 8127588989220458984375 k^5 n^19 - 292795052411778125 a n^20 - > 2870696813570914062500 k^4 n^20 + > 491998345646972656250 k^3 n^21 + > 1722637521892656250000 k^2 n^22 + 201732679018423828125 k n^23 + > 43107630657534703125 n^24 == 0 && k != 0, {a, k, n}, Reals] > > Merry Christmas and Happy New Year > Artur > >
|
Pages: 1 Prev: Taylor expansion of Jacobi's elliptic functions Next: algebraic numbers |