From: leigh pascoe on 2 Mar 2010 08:01 Le 02/03/2010 09:34, Chris H. Fleming a =C3=A9crit : > Sum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] > > Sum does not converge. > > NSum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] > > 0.206647 > > > Fortunately I know how to do this sum by hand, but Mathematica can > usually handle these Harmonic number functions pretty well. > > Does anyone know a way of massaging this into a form Mathematica can > digest? > > > Mathematica 7.0.1.0 In[3]:= NSum[k/((k^2+1) (k^4+4)),{k,1,\[Infinity]}] Out[3]= 0.125 In[4]:= Sum[k/((k^2+1) (k^4+4)),{k,1,\[Infinity]}] Out[4]= 1/8 Leigh
From: leigh pascoe on 3 Mar 2010 05:54 Le 02/03/2010 13:56, leigh pascoe a =C3=A9crit : > Le 02/03/2010 09:34, Chris H. Fleming a =C3=A9crit : > >> Sum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] >> >> Sum does not converge. >> >> NSum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] >> >> 0.206647 >> >> >> Fortunately I know how to do this sum by hand, but Mathematica can >> usually handle these Harmonic number functions pretty well. >> >> Does anyone know a way of massaging this into a form Mathematica can >> digest? >> >> >> >> > Mathematica 7.0.1.0 > In[3]:= NSum[k/((k^2+1) (k^4+4)),{k,1,\[Infinity]}] > Out[3]= 0.125 > In[4]:= Sum[k/((k^2+1) (k^4+4)),{k,1,\[Infinity]}] > Out[4]= 1/8 > > Leigh > > > Correction of previous reply In[16]:= $Version Out[16]= 7.0 for Microsoft Windows (32-bit) (February 18, 2009) In[17]:= NSum[k/((k^2+1) (k^2+4)),{k,1,\[Infinity]}] Out[17]= 0.206647 In[18]:= Sum[k/((k^2 + 1) (k^2 + 4)), {k, 1, \[Infinity]}] Out[18]= -(1/2) RootSum[10 + 14 #1 + 11 #1^2 + 4 #1^3 + #1^4 &, PolyGamma[0, -#1]/(7 + 4 #1 + 2 #1^2) &] In[19]:= N[%] Out[19]= 0.206647 + 0. I
First
|
Prev
|
Pages: 1 2 Prev: Modification of Variable in NDSolve Next: Annoying error in Hypergeometric2F1 |