From: Maury Barbato on
Hello,
there is some real function f:[0,1]-> R, such that
for some dense subset E of [0,1], we have

lim_{x -> y} f(x) = + infinity,

for every y in E?

I think the answer is yes, but I don't see how
to construct such a function. Some idea?
Thank you very much for your attention.

My Best Regards,
Maury Barbato
From: A N Niel on
In article
<482310758.58816.1272814384272.JavaMail.root(a)gallium.mathforum.org>,
Maury Barbato <mauriziobarbato(a)aruba.it> wrote:

> Hello,
> there is some real function f:[0,1]-> R, such that
> for some dense subset E of [0,1], we have
>
> lim_{x -> y} f(x) = + infinity,
>
> for every y in E?
>
> I think the answer is yes, but I don't see how
> to construct such a function. Some idea?
> Thank you very much for your attention.
>
> My Best Regards,
> Maury Barbato

Let's see. For each n, f(x) > n at least on a dense open set E_n. But
the intersection of all these E_n is empty. No, not possible.
From: Rob Johnson on
In article <482310758.58816.1272814384272.JavaMail.root(a)gallium.mathforum.org>,
Maury Barbato <mauriziobarbato(a)aruba.it> wrote:
>there is some real function f:[0,1]-> R, such that
>for some dense subset E of [0,1], we have
>
>lim_{x -> y} f(x) = + infinity,
>
>for every y in E?
>
>I think the answer is yes, but I don't see how
>to construct such a function. Some idea?

Let { q_k } be an enumeration of the rationals and define

g(x) = (x^2 + x^4)^{-1/3}

Note that g is positive and

|\oo
G = | g(x) dx < oo
\|-oo

In fact, G = Gamma(1/6)^2/Gamma(1/3). Furthermore,

lim g(x) = oo
x->0

Now, define

oo
--- -k
f(x) = > 2 g(x - q_k)
---
k=1

We must have that for each rational q

lim f(x) = oo
x->q

However,

|\oo
| f(x) dx = G < oo
\|-oo

so f is finite almost everywhere.

Rob Johnson <rob(a)trash.whim.org>
take out the trash before replying
to view any ASCII art, display article in a monospaced font
From: mister1729 on
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite
Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite

"Maury Barbato" <mauriziobarbato(a)aruba.it> wrote in message
news:482310758.58816.1272814384272.JavaMail.root(a)gallium.mathforum.org...
> Hello,
> there is some real function f:[0,1]-> R, such that
> for some dense subset E of [0,1], we have
>
> lim_{x -> y} f(x) = + infinity,
>
> for every y in E?
>
> I think the answer is yes, but I don't see how
> to construct such a function. Some idea?
> Thank you very much for your attention.
>
> My Best Regards,
> Maury Barbato


From: Maury Barbato on
A N Niel wrote:

> In article
> <482310758.58816.1272814384272.JavaMail.root(a)gallium.m
> athforum.org>,
> Maury Barbato <mauriziobarbato(a)aruba.it> wrote:
>
> > Hello,
> > there is some real function f:[0,1]-> R, such that
> > for some dense subset E of [0,1], we have
> >
> > lim_{x -> y} f(x) = + infinity,
> >
> > for every y in E?
> >
> > I think the answer is yes, but I don't see how
> > to construct such a function. Some idea?
> > Thank you very much for your attention.
> >
> > My Best Regards,
> > Maury Barbato
>
> Let's see. For each n, f(x) > n at least on a dense
> open set E_n. But
> the intersection of all these E_n is empty. No, not
> possible.

Yes, using Baire's Theorem ... how didn't I think
about it before?!

Thank you so much Niel, for your help.
My Best Regards,
Maury Barbato