From: Maury Barbato on 2 May 2010 07:32 Hello, there is some real function f:[0,1]-> R, such that for some dense subset E of [0,1], we have lim_{x -> y} f(x) = + infinity, for every y in E? I think the answer is yes, but I don't see how to construct such a function. Some idea? Thank you very much for your attention. My Best Regards, Maury Barbato
From: A N Niel on 2 May 2010 13:35 In article <482310758.58816.1272814384272.JavaMail.root(a)gallium.mathforum.org>, Maury Barbato <mauriziobarbato(a)aruba.it> wrote: > Hello, > there is some real function f:[0,1]-> R, such that > for some dense subset E of [0,1], we have > > lim_{x -> y} f(x) = + infinity, > > for every y in E? > > I think the answer is yes, but I don't see how > to construct such a function. Some idea? > Thank you very much for your attention. > > My Best Regards, > Maury Barbato Let's see. For each n, f(x) > n at least on a dense open set E_n. But the intersection of all these E_n is empty. No, not possible.
From: Rob Johnson on 2 May 2010 14:52 In article <482310758.58816.1272814384272.JavaMail.root(a)gallium.mathforum.org>, Maury Barbato <mauriziobarbato(a)aruba.it> wrote: >there is some real function f:[0,1]-> R, such that >for some dense subset E of [0,1], we have > >lim_{x -> y} f(x) = + infinity, > >for every y in E? > >I think the answer is yes, but I don't see how >to construct such a function. Some idea? Let { q_k } be an enumeration of the rationals and define g(x) = (x^2 + x^4)^{-1/3} Note that g is positive and |\oo G = | g(x) dx < oo \|-oo In fact, G = Gamma(1/6)^2/Gamma(1/3). Furthermore, lim g(x) = oo x->0 Now, define oo --- -k f(x) = > 2 g(x - q_k) --- k=1 We must have that for each rational q lim f(x) = oo x->q However, |\oo | f(x) dx = G < oo \|-oo so f is finite almost everywhere. Rob Johnson <rob(a)trash.whim.org> take out the trash before replying to view any ASCII art, display article in a monospaced font
From: mister1729 on 2 May 2010 17:17 Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite Inifnite "Maury Barbato" <mauriziobarbato(a)aruba.it> wrote in message news:482310758.58816.1272814384272.JavaMail.root(a)gallium.mathforum.org... > Hello, > there is some real function f:[0,1]-> R, such that > for some dense subset E of [0,1], we have > > lim_{x -> y} f(x) = + infinity, > > for every y in E? > > I think the answer is yes, but I don't see how > to construct such a function. Some idea? > Thank you very much for your attention. > > My Best Regards, > Maury Barbato
From: Maury Barbato on 3 May 2010 00:29 A N Niel wrote: > In article > <482310758.58816.1272814384272.JavaMail.root(a)gallium.m > athforum.org>, > Maury Barbato <mauriziobarbato(a)aruba.it> wrote: > > > Hello, > > there is some real function f:[0,1]-> R, such that > > for some dense subset E of [0,1], we have > > > > lim_{x -> y} f(x) = + infinity, > > > > for every y in E? > > > > I think the answer is yes, but I don't see how > > to construct such a function. Some idea? > > Thank you very much for your attention. > > > > My Best Regards, > > Maury Barbato > > Let's see. For each n, f(x) > n at least on a dense > open set E_n. But > the intersection of all these E_n is empty. No, not > possible. Yes, using Baire's Theorem ... how didn't I think about it before?! Thank you so much Niel, for your help. My Best Regards, Maury Barbato
|
Next
|
Last
Pages: 1 2 Prev: Symmetry and Abstraction Next: Only solvable perhaps by a very profound math statements |