From: Walter Roberson on
Roger Stafford wrote:

> - - - - - - - Walter, this morning I continued to have trouble showing
> that a phi and beta solution could always be found, given any delta,
> psi, and omega, but finally I stumbled onto a counterexample! If you
> set delta = 20 degrees, omega = 240 degrees, and psi = 175 degrees, then
> no matter what phi and beta are, the argument, x, of acosd above never
> climbs above about .65, so that no solution is possible.

Continuing this out of curiousity, knowing that it wasn't of use to the
original poster:

Solving for phi and beta, Maple finds 37 solutions, _one_ of which has beta as
a free parameter. That full expression is rather long unless you do
sub-expression elimination. I include the simplified version below, for no
good reason :)

The expression does generate a complex number for the specific case you
indicated; it appears to involve roughly -Pi/2*I . The other 36 solutions
appeared to involve +/- Pi*I and are all complex numbers for your sample angles.


Note that the below is coded for radians.

T := simplify(solve(1 = sin(delta)*sin(phi)*cos(beta) -
sin(delta)*cos(phi)*sin(beta)*cos(psi) +
cos(delta)*cos(phi)*cos(beta)*cos(omega) +
cos(delta)*sin(phi)*sin(beta)*cos(psi)*cos(omega) +
cos(delta)*sin(beta)*sin(psi)*sin(omega), [phi, beta]));

codegeneration[optimize](T);


t1 = cos(delta),
t2 = t1^2;
t3 = cos(omega);
t4 = t3^2;
t5 = t4*t2;
t6 = cos(psi);
t7 = t6^2;
t11 = RootOf(1 - 4*cos(delta)*sin(beta)*sin(psi)*sin(omega) + cos(beta)^4 -
6*cos(delta)^2*cos(psi)^2 + cos(delta)^4 +
8*cos(delta)^2*cos(beta)^2*cos(omega)^2 -
8*cos(delta)^2*cos(beta)^2*cos(psi)^2*cos(omega)^2 +
4*cos(delta)^2*cos(beta)^4*cos(psi)^2*cos(omega)^2 -
2*cos(delta)^4*cos(beta)^4*cos(psi)^2*cos(omega)^2 -
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2*cos(omega)^2 -
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2*cos(psi)^2 +
2*cos(delta)^4*cos(psi)^2*cos(omega)^2 + 6*cos(delta)^2 -
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega) - 6*cos(delta)^2*cos(beta)^2 -
2*cos(delta)^2*cos(beta)^4*cos(omega)^2 +
2*cos(delta)^4*cos(beta)^2*cos(omega)^2 +
cos(delta)^4*cos(beta)^4*cos(omega)^4 - 2*cos(beta)^2 -
2*cos(delta)^4*cos(beta)^2*cos(omega)^4 +
8*cos(delta)^2*cos(beta)^2*cos(psi)^2 - 2*cos(delta)^2*cos(beta)^4*cos(psi)^2
+ 2*cos(delta)^4*cos(beta)^2*cos(psi)^2 -
2*cos(delta)^4*cos(beta)^2*cos(psi)^4 + cos(delta)^4*cos(beta)^4*cos(psi)^4 -
2*cos(delta)^4*cos(psi)^2 + cos(delta)^4*cos(psi)^4 + (cos(beta)^4 +
cos(psi)^4 + 4*cos(delta)^2*cos(beta)^2*cos(psi)^2*cos(omega)^2 -
4*cos(delta)^2*cos(beta)^4*cos(psi)^2*cos(omega)^2 +
4*cos(delta)^4*cos(beta)^4*cos(psi)^2*cos(omega)^2 +
2*cos(delta)^2*cos(beta)^4*cos(omega)^2 -
2*cos(delta)^4*cos(beta)^4*cos(omega)^2 +
cos(delta)^4*cos(beta)^4*cos(omega)^4 - 4*cos(delta)^2*cos(beta)^2*cos(psi)^2
+ 4*cos(delta)^2*cos(beta)^4*cos(psi)^2 +
2*cos(delta)^4*cos(beta)^2*cos(psi)^2 - 2*cos(delta)^4*cos(beta)^2*cos(psi)^4
+ cos(delta)^4*cos(beta)^4*cos(psi)^4 + cos(delta)^4*cos(psi)^4 +
2*cos(beta)^2*cos(psi)^2 - 2*cos(beta)^2*cos(psi)^4 - 2*cos(beta)^4*cos(psi)^2
+ cos(beta)^4*cos(psi)^4 - 2*cos(delta)^2*cos(psi)^4 +
4*cos(delta)^2*cos(beta)^2*cos(psi)^4 - 2*cos(delta)^2*cos(beta)^4*cos(psi)^4
- 2*cos(delta)^4*cos(beta)^4*cos(psi)^2 +
2*cos(delta)^2*cos(psi)^4*cos(omega)^2 -
2*cos(delta)^4*cos(psi)^4*cos(omega)^2 + cos(delta)^4*cos(psi)^4*cos(omega)^4
- 2*cos(delta)^2*cos(beta)^4 + cos(delta)^4*cos(beta)^4 -
4*cos(delta)^2*cos(beta)^2*cos(psi)^4*cos(omega)^2 +
2*cos(delta)^2*cos(beta)^4*cos(psi)^4*cos(omega)^2 -
4*cos(delta)^4*cos(beta)^2*cos(psi)^2*cos(omega)^2 +
2*cos(delta)^4*cos(beta)^2*cos(psi)^2*cos(omega)^4 +
4*cos(delta)^4*cos(beta)^2*cos(psi)^4*cos(omega)^2 -
2*cos(delta)^4*cos(beta)^2*cos(psi)^4*cos(omega)^4 -
2*cos(delta)^4*cos(beta)^4*cos(psi)^2*cos(omega)^4 -
2*cos(delta)^4*cos(beta)^4*cos(psi)^4*cos(omega)^2 +
cos(delta)^4*cos(beta)^4*cos(psi)^4*cos(omega)^4)*_Z^4 +
(8*cos(psi)^3*sin(omega)*sin(delta)*cos(delta)^3*sin(psi)*cos(beta)^2*cos(omega)^2
+ 4*cos(psi)^3*sin(delta)*sin(beta) -
4*cos(psi)^3*sin(omega)*sin(delta)*cos(delta)*sin(psi)*cos(beta)^4 -
8*cos(psi)^3*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^2 -
4*cos(psi)^3*sin(omega)*sin(delta)*cos(delta)*sin(psi) +
8*cos(psi)^3*sin(omega)*sin(delta)*cos(delta)*sin(psi)
*cos(beta)^2 +
4*cos(psi)*sin(delta)*cos(delta)*sin(psi)*sin(omega)*cos(beta)^4 -
4*cos(psi)^3*sin(delta)*sin(beta)*cos(beta)^2 -
4*cos(psi)*sin(omega)*sin(delta)*cos(delta)^3*sin(psi)*cos(beta)^4 +
4*cos(psi)^3*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^4 +
4*cos(psi)*sin(delta)*sin(beta)*cos(beta)^2 +
4*cos(psi)*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^2 +
4*cos(psi)*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^4*cos(omega)^2
- 4*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2 -
4*cos(psi)^3*sin(omega)*sin(delta)*cos(delta)^3*sin(psi)*cos(omega)^2 +
4*cos(psi)^3*sin(delta)*cos(delta)^3*sin(psi)*sin(omega) - 4*cos(psi)^3*
sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2*cos(omega)^2 +
4*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2*cos(omega)^2 -
4*cos(psi)*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2 -
4*cos(psi)*sin(delta)*cos(delta)*sin(psi)*sin(omega)*cos(beta)^2 +
4*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2 -
4*cos(psi)^3*sin(omega)*sin(delta)*cos(delta)^3*sin(psi)*cos(beta)^4*cos(omega)^2
+ 4*cos(psi)*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2*cos(omega)^2 -
4*cos(psi)*sin(omega)*sin(delta)*cos(delta)^3*sin(psi)*cos(beta)^2*cos(omega)^2)*_Z^3
+ (6*cos(psi)^2 - 2*cos(beta)^4 -
4*cos(delta)^2*cos(beta)^2*cos(omega)^2 +
8*cos(delta)^2*cos(beta)^2*cos(psi)^2*cos(omega)^2 -
4*cos(delta)^2*cos(beta)^4*cos(psi)^2*cos(omega)^2 +
4*cos(delta)^4*cos(beta)^4*cos(psi)^2*cos(omega)^2 -
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(psi)^2*cos(omega)^2 +
12*cos(delta)*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2*cos(psi)^2 +
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2*cos(omega)^2 - 12*
cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2*cos(psi)^2 +
8*cos(delta)^4*cos(psi)^2*cos(omega)^2 -
2*cos(delta)^4*cos(psi)^2*cos(omega)^4 +
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2*cos(psi)^2*cos(omega)^2
+ 2*cos(delta)^4*cos(beta)^4*cos(omega)^2 -
2*cos(delta)^4*cos(beta)^4*cos(omega)^4 + 2*cos(beta)^2 +
2*cos(delta)^4*cos(beta)^2*cos(omega)^4 -
4*cos(delta)^2*cos(beta)^2*cos(psi)^2 + 4*cos(delta)^2*cos(beta)^4*cos(psi)^2
+ 12*cos(delta)^4*cos(beta)^2*cos(psi)^2 - 12*cos(
delta)^4*cos(beta)^2*cos(psi)^4 + 6*cos(delta)^4*cos(beta)^4*cos(psi)^4 -
6*cos(delta)^4*cos(psi)^2 + 6*cos(delta)^4*cos(psi)^4 -
8*cos(beta)^2*cos(psi)^2 + 2*cos(beta)^4*
cos(psi)^2 - 6*cos(delta)^2*cos(psi)^4 +
12*cos(delta)^2*cos(beta)^2*cos(psi)^4 - 6*cos(delta)^2*cos(beta)^4*cos(psi)^4
- 6*cos(delta)^4*cos(beta)^4*cos(psi)^2 +
4*cos(delta)^2*cos(psi)^4*cos(omega)^2 -
6*cos(delta)^4*cos(psi)^4*cos(omega)^2 +
12*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(psi)^2 -
4*cos(delta)*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2 -
2*cos(delta)^4*cos(beta)^2 + 2*cos(delta)^2*cos(beta)^4 -
4*cos(delta)^2*cos(omega)^2*cos(psi)^2 -
8*cos(delta)^2*cos(beta)^2*cos(psi)^4*cos(omega)^2 +
4*cos(delta)^2*cos(beta)^4*cos(psi)^4*cos(omega)^2 -
12*cos(delta)^4*cos(beta)^2*cos(psi)^2*cos(omega)^2 +
12*cos(delta)^4*cos(beta)^2*cos(psi)^4*cos(omega)^2 +
2*cos(delta)^4*cos(beta)^4*cos(psi)^2*cos(omega)^4 -
6*cos(delta)^4*cos(beta)^4*cos(psi)^4*cos(omega)^2 +
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2 -
12*cos(delta)*sin(beta)*sin(psi)*sin(omega)*cos(psi)^2)*_Z^2 + ( -
12*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2 -
4*cos(psi)*sin(delta)*cos(delta)^3*sin(psi)*sin(omega) -
4*cos(psi)*sin(delta)*cos(delta)*sin(psi)*sin(omega)*cos(beta)^4 -
8*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2*cos(omega)^2 +
8*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2*cos(omega)^2 +
16*cos(psi)*sin(delta)*cos(delta)*sin(psi)*sin(omega)*cos(beta)^2 +
12*cos(psi)^3*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2 +
4*cos(psi)*sin(delta)*sin(beta) -
8*cos(psi)*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2 +
4*cos(psi)*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(omega)^2 +
4*cos(psi)^3*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^4 +
4*cos(psi)*sin(delta)*sin(beta)*cos(delta)^2*cos(beta)^2*cos(omega)^2 +
4*cos(psi)^3*sin(delta)*cos(delta)^3*sin(psi)*sin(omega) -
4*cos(psi)*sin(delta)*sin(beta)*cos(beta)^2 +
12*cos(psi)*sin(delta)*sin(beta)*cos(delta)^2 -
12*cos(psi)*sin(delta)*sin(beta)*cos(delta)^2*cos(omega)^2 -
4*cos(psi)*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^4*cos(omega)^2
- 12*cos(psi)*sin(delta)*cos(delta)*sin(psi)*sin(omega) +
4*cos(psi)*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^2 -
8*cos(psi)^3*sin(delta)*cos(delta)^3*sin(psi)*sin(omega)*cos(beta)^2)*_Z +
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(omega)^2 +
4*cos(delta)^3*sin(beta)*sin(psi)*sin(omega)*cos(psi)^2 +
4*cos(delta)*sin(beta)*sin(psi)*sin(omega)*cos(beta)^2 -
6*cos(delta)^2*cos(omega)^2 + 4*cos(delta)^2*cos(omega)^2*cos(psi)^2 -
2*cos(omega)^2*cos(delta)^4 + cos(omega)^4*cos(delta)^4);
t12 = t11^2;
t13 = t7*t12;
t14 = cos(beta);
t15 = t14^2;
t19 = t11*t1*t6;
t20 = sin(delta);
t21 = sin(psi);
t22 = t21*t20;
t23 = sin(omega);
t31 = t2*t12;
t34 = t4*t7;
t36 = t7*t15;
t38 = 1 + 2*t7*t5 - t7*t2 + t13 - t15*t13 + t15*t12 - 2*t23*t22*t19 +
2*t15*t23*t22*t19 - t4*t15*t31 - t34*t31 + t36*t31;
t39 = sin(beta);
t44 = t15*t2;
t57 = - 2*t23*t21*t39*t1 - 2*t34*t44 + t2 - t5 - t15 - t7*t31
+ t4*t36*t31 + t4*t44 + t7*t44 - t15*t31 + 2*t39*t11*t20*t6;
t63 = t21*t6;
t64 = t1*t23;
t68 = t11*t20;
t77 = arctan( - 1/2/( - t6*t39 + t64*t63 - t15*t64*t63 - t15*t68 - t7*t68 +
t36*t68)/t1/t3*(t38 + t57), t11);
First  |  Prev  | 
Pages: 1 2 3
Prev: Changing uitable data
Next: Euclidean distance