From: Last Post on 31 Mar 2010 20:30 SI / USGS Weekly VolcanicActivityReport 24 March- 30 March 2010 3 new + 10 Ongoing = 13 Actives Sally Kuhn Sennert - Weekly Report Editor http://www.volcano.si.edu/reports/usgs/ NewActivity/Unrest: | Eyjafjöll, Southern Iceland | Karymsky, Eastern Kamchatka | Mauna Loa, Hawaii (USA) Ongoing Activity: | Batu Tara, Komba Island (Indonesia) | Chaitén, Southern Chile | Kilauea, Hawaii (USA) | Kliuchevskoi, Central Kamchatka (Russia) | Llaima, Central Chile | Sakura-jima, Kyushu | Santa María, Guatemala | Shiveluch, Central Kamchatka (Russia) | Soufrière Hills, Montserrat | Suwanose-jima, Ryukyu Islands (Japan) This page is updated on Wednesdays, please see the GVP Home Page for news of the latest significantactivity. The Weekly VolcanicActivityReport is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey'sVolcanoHazards Program. Updated by 2300 UTC every Wednesday, notices of volcanicactivityposted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoseruptingduring theweek, but rather a summary ofactivity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network. Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source. NewActivity/Unrest EYJAFJOLL Southern Iceland 63.63°N, 19.62°W; summit elev. 1666 m According to news articles, the fissure eruption from Eyjafjöll continued during 24-30 March. On 24 March, steam explosions were seen. A local scientist described four or five active craters and a 200- meter-high basalt lava-fall into Hrunagil canyon. Two days later reports indicated that lava flows had changed course and had entered the Hvannárgil canyon down a 100-meter-high lava-fall; water levels in that drainage increased. From a helicopter on 28 March, scientists saw lava flowing into both canyons and noted fewer jets of lava. The next evening a swarm of earthquakes in the region measuring M 2-2.5 were detected. A geophysicist noted that seismicity was gradually decreasing. The lava covered an area of 1 square kilometer. Geologic Summary. Eyjafjöll (also known as Eyjafjallajökull) is located immediately west of Katla volcano. Eyjafjöll consists of an E- W-trending, elongated ice-covered basaltic-andesite stratovolcano with a 2.5-km-wide summit caldera. Fissure-fed lava flows occur on both the eastern and western flanks of the volcano, but are more prominent on the western side. Although the 1666-m-high volcano has erupted during historical time, it has been less active than other volcanoes of Iceland's eastern volcanic zone, and relatively few Holocene lava flows are known. The sole historical eruption of Eyjafjöll, prior to an eruption in 2010, produced intermediate-to-silicic tephra from the central caldera during December 1821 to January 1823. Map Sources: Iceland Review, Iceland Review, Iceland Review, Iceland Review Eyjafjöll Information from the Global Volcanism Program KARYMSKY Eastern Kamchatka 54.05°N, 159.45°E; summit elev. 1536 m KVERT reported that seismic activity from Karymsky increased on 25 March. Two days later, an intense thermal anomaly over the volcano was seen in satellite imagery. During 28-29 March ash plumes were seen in the area of the volcano. The Aviation Color Code level was raised to Orange. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Map Source: Kamchatkan Volcanic Eruption Response Team (KVERT) Karymsky Information from the Global Volcanism Program MAUNA LOA Hawaii (USA) 19.475°N, 155.608°W; summit elev. 4170 m On 30 March, HVO reported that the Aviation Color Code and the Volcano Alert Level for Mauna Loa were both lowered to Green and Normal, respectively. Deformation had not been noted since mid-2009 and seismicity was at normal levels. Geologic Summary. Massive Mauna Loa shield volcano rises almost 9 km above the sea floor to form the world's largest active volcano. Flank eruptions are predominately from the lengthy NE and SW rift zones, and the summit is cut by the Mokuaweoweo caldera, which sits within an older and larger 6 x 8 km caldera. Almost 90% of the volcano's surface is covered by lavas less than 4,000 years old. During a 750-year eruptive period beginning about 1,500 years ago, a series of voluminous overflows from a summit lava lake covered about one fourth of the volcano's surface. The ensuing 750-year period, from shortly after the formation of Mokuaweoweo caldera until the present, saw an additional quarter of the volcano covered with lava flows predominately from summit and NW rift zone vents. Map Source: US Geological Survey Hawaiian Volcano Observatory (HVO) Mauna Loa Information from the Global Volcanism Program Ongoing Activity BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m Based on analyses of satellite imagery, the Darwin VAAC reported that during 24-26 March ash plumes from Batu Tara rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted about 10-120 km W, NW, and NE. Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow. Map Source: Darwin Volcanic Ash Advisory Centre (VAAC) Batu Tara Information from the Global Volcanism Program CHAITEN Southern Chile 42.833°S, 72.646°W; summit elev. 1122 m Based on analyses of satellite imagery, the Buenos Aires VAAC reported that a plume from Chaitén's lava-dome complex drifted 20 km SW on 29 March. Geologic Summary. Chaitén is a small, glacier-free caldera with a Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. A pyroclastic-surge and pumice deposit considered to originate from the eruption that formed the elliptical 2.5 x 4 km wide summit caldera was dated at about 9400 years ago. A rhyolitic, 962-m- high obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km away from the volcano to the north and south. The caldera is breached on the SW side by a river that drains to the bay of Chaitén, and the high point on its southern rim reaches 1122 m. Map Source: Buenos Aires Volcanic Ash Advisory Center (VAAC) Chaitén Information from the Global Volcanism Program KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m During 24-30 March, HVO reported incandescence from an active lava surface about 200 m below a vent in the floor of Kilauea's Halema'uma'u crater. The lava surface circulated and both rose and drained through a pit in the cavity floor. Plumes from the vent drifted mainly SW, dropping small amounts of ash, and occasionally spatter, downwind. Gas measurements on 25 and 26 March indicated that the sulfur dioxide emission rate at the summit remained elevated at 600 and 800 tonnes per day, respectively. The 2003-2007 average rate was 140 tonnes per day. Lava from beneath the Thanksgiving Eve Breakout (TEB) and rootless shield complex flowed SE through the upper portion of a lava tube system and broke out onto the surface. Thermal anomalies detected by satellite, and visual observations, revealed active lava flows above the pali. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. Map Source: US Geological Survey Hawaiian Volcano Observatory (HVO) Kilauea Information from the Global Volcanism Program KLIUCHEVSKOI Central Kamchatka (Russia) 56.057°N, 160.638°E; summit elev. 4835 m KVERT reported that during 19-29 March seismic activity from Kliuchevskoi was above background levels. Strombolian activity ejected material 100-300 m above the crater and lava continued to flow down the flanks. Satellite imagery revealed a large daily thermal anomaly from the volcano, and gas-and-steam plumes that drifted over 80 km E during 18-20 March. Ash plumes seen in satellite imagery drifted about 75 km NE on 21 and 24 March. The Aviation Color Code level remained at Orange. Geologic Summary. Kliuchevskoi is Kamchatka's highest and most active volcano. Since its origin about 7,000 years ago, the beautifully symmetrical, 4,835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. More than 100 flank eruptions, mostly on the NE and SE flanks of the conical volcano between 500 m and 3,600 m elevation, have occurred during the past 3,000 years. The morphology of its 700-m- wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included major explosive and effusive events from flank craters. Map Source: Kamchatkan Volcanic Eruption Response Team (KVERT) Kliuchevskoi Information from the Global Volcanism Program LLAIMA Central Chile 38.692°S, 71.729°W; summit elev. 3125 m SERNAGEOMIN reported that seismicity from Llaima had generally decreased during 5-22 March, to levels detected prior to an earthquake on 27 February. A significant number of earthquakes that indicated fluid movement in the volcano continued to be registered. Gas-and- steam plumes rose 100 m from their source. The Alert Level was lowered to Yellow, (Level 3) on a three-color scale. Geologic Summary. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other to the SE. The massive 3,125-m-high, glacier- covered stratovolcano has a volume of 400 cu km. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km- wide caldera that formed about 13,200 years ago, following eruption of the 24 cu km Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7,200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century. Map Source: Servicio Nacional de Geología y Minería (SERNAGEOMIN) Llaima Information from the Global Volcanism Program SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m The Tokyo VAAC reported that during 24-30 March explosions from Sakura- jima sometimes produced plumes identified on satellite imagery. Those plumes, along with ash plumes occasionally seen by pilots, rose to altitudes of 1.5-2.7 km (5,000-9,000 ft) a.s.l. and drifted SW, S, SE, and E. Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Map Source: Tokyo Volcanic Ash Advisory Center (VAAC) Sakura-jima Information from the Global Volcanism Program SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m On 29 March, INSIVUMEH reported that explosions from Santa María's Santiaguito lava dome complex produced ash plumes that rose to altitudes of 3-3.3 km (10,000-10,800 ft) a.s.l. and drifted W over inhabited areas. Avalanches from a lava flow descended the SW flank. The Washington VAAC reported that on 30 March a diffuse ash plume seen in satellite imagery drifted between the NW and NE. Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp- topped, conical profile that is cut on the SW flank by a large, 1-km- wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars. Map Sources: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH), Washington Volcanic Ash Advisory Center (VAAC) Santa María Information from the Global Volcanism Program SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m KVERT reported that during 19-29 March seismic activity from Shiveluch was above background levels, possibly indicating ash plumes rising to an altitude of 4.2 km (13,800 ft) a.s.l. Hot avalanches from the lava dome were seen at night. On 22 March, seismic signals detected an explosion that may have produced an ash plume rising to an altitude of 7 km (23,000 ft) a.s.l. Satellite imagery revealed a large daily thermal anomaly from the volcano, and ash plumes that drifted over 40 km NE on 21 March. The Aviation Color Code level remained at Orange. Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964. Map Source: Kamchatkan Volcanic Eruption Response Team (KVERT) Shiveluch Information from the Global Volcanism Program SOUFRIERE HILLS Montserrat 16.72°N, 62.18°W; summit elev. 915 m MVO reported that during 19-26 March activity from the Soufrière Hills lava dome was at a low level. Small-to-moderate-sized pyroclastic flows on the W and S flanks occurred sporadically. The largest pyroclastic flow traveled 2 km W down Spring Ghaut on 25 March. The Hazard Level remained at 3. Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the E, was formed during an eruption about 4,000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non- eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Map Source: Montserrat Volcano Observatory (MVO) Soufrière Hills Information from the Global Volcanism Program SUWANOSE-JIMA Ryukyu Islands (Japan) 29.635°N, 129.716°E; summit elev. 799 m Based on information from JMA, the Tokyo VAAC reported an explosion from Suwanose-jima on 29 March. Details of possible resulting plumes were not reported. Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose- jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent Strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for about 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Map Source: Tokyo Volcanic Ash Advisory Center (VAAC) Suwanose-jima Information from the Global Volcanism Program Additional Reports of Volcanic Activity by Country The following websites have frequently updated activity reports on volcanoes in addition to those that meet the criteria for inclusion in the Weekly Volcanic Activity Report. The websites are organized by country and are maintained by various agencies. Ecuador, Indonesia, Japan, New Zealand, United States and Russia Sally Kuhn Sennert - Weekly Report Editor URL: http://www.volcano.si.edu/reports/usgs/ Global Volcanism Program Department of Mineral Sciences National Museum of Natural History Smithsonian Institution
|
Pages: 1 Prev: Station's clock with respect to the train Next: FY:— EYJAFJOLL Southern Iceland Volcano |