From: tyler on 22 May 2010 00:00 (r1+150)^2 = (r1+200)^2 + r4^2 -2*(r1+200) * 499.1 * cos(16.177 ) r1^2 = (r1+200)^2 + 1267.9^2 -2*(r1+200) * 1267.9* cos (teta - 16.177 ) Unknown: r1, teta please help me solve this using matlab!!! Thanks
From: Torsten Hennig on 22 May 2010 02:49 > (r1+150)^2 = (r1+200)^2 + r4^2 -2*(r1+200) * 499.1 * > cos(16.177 ) > > r1^2 = (r1+200)^2 + 1267.9^2 -2*(r1+200) * 1267.9* > cos (teta - 16.177 ) > > > Unknown: r1, teta > > please help me solve this using matlab!!! > > Thanks The first equation is a linear equation in r1 alone ; you can directly solve for r1. Now insert the r1 obtained in the second equation and solve for t(h)eta. Best wishes Torsten.
From: tyler on 23 May 2010 06:55 Thank You for your reply Torsten. I have made a mistake in the equations, these are the fixed equations: (r1+150)^2 = (r1+200)^2 + 499.1^2 -2*(r1+200) * 499.1 * cos(teta) o r1^2 = (r1+200)^2 + 1267.9^2 -2*(r1+200) * 1267.9* cos (teta - 16.177 ) Thank you for your kind help Tyler
|
Pages: 1 Prev: .....segmentation using morphology..... Next: HorzResolution and VertResolution |