From: Robert Israel on 24 Jan 2010 14:23 Mensanator <mensanator(a)aol.com> writes: > On Jan 24, 11:45=A0am, David W. Cantrell <DWCantr...(a)sigmaxi.net> wrote: > > TCL <tl...(a)cox.net> wrote: > > > What is the closed form formula (if any) of the sum > > > > > P(n,0)+P(n,1)+....+P(n,n) > > > > > where P(n,i) is the number of permutations of n taken i at a time? > > > > It appears that you want the total number of arrangements of a set with n > > elements, as discussed at > > <http://www.research.att.com/~njas/sequences/A000522>. > > > > A simple formula for that total number of arrangements is > > > > [ e * n! ] > > > > where the square brackets denote the floor function. > > Yeah, but that breaks down at n =3D 18: > > 1 2 2 > 2 5 5 > 3 16 16 > 4 65 65 > 5 326 326 > 6 1957 1957 > 7 13700 13700 > 8 109601 109601 > 9 986410 986410 > 10 9864101 9864101 > 11 108505112 108505112 > 12 1302061345 1302061345 > 13 16926797486 16926797486 > 14 236975164805 236975164805 > 15 3554627472076 3554627472076 > 16 56874039553217 56874039553217 > 17 966858672404690 966858672404690 > 18 17403456103284421 17403456103284420 <-- > 19 330665665962404000 330665665962403968 > 20 6613313319248080001 6613313319248079872 > 21 138879579704209680022 138879579704209670144 > 22 3055350753492612960485 3055350753492612939776 > 23 70273067330330098091156 70273067330330098139136 > 24 1686553615927922354187745 1686553615927922288230400 > 25 42163840398198058854693626 42163840398198055595147264 > 26 1096259850353149530222034277 1096259850353149479833567232 > 27 29599015959535037315994925480 29599015959535034993433640960 > 28 828772446866981044847857913441 828772446866981067777072168960 > 29 24034400959142450300587879489790 24034400959142450684060116189184 > > output of sum_of_perm.py > # Python 3.1 > import math > for n in range(1,30): > print(n,end=3D' ') > q =3D [1] > for i in range(n,0,-1): > q.append(q[-1]*i) > print(sum(q),math.floor(math.exp(1)*math.factorial(n))) Insufficient accuracy being used in evaluating e? 17403456103284421 is correct for n=18, according to Maple. Note that n! e = sum_{k=0}^infty n!/k! = sum_{k=0}^n n!/k! + sum_{k=n+1}^infty n!/k! and sum_{k=n+1}^infty n!/k! < sum_{j=1}^infty 1/(n+1)^j = 1/n -- Robert Israel israel(a)math.MyUniversitysInitials.ca Department of Mathematics http://www.math.ubc.ca/~israel University of British Columbia Vancouver, BC, Canada
From: Robert Israel on 24 Jan 2010 14:33 Mensanator <mensanator(a)aol.com> writes: > > > > > A simple formula for that total number of arrangements is > > > > > [ e * n! ] > > > > > where the square brackets denote the floor function. > > > > Yeah, but that breaks down at n =3D 18: > > Probably due to the limited precision of the calculation of e. > > But that's an important point, isn't it? > > To get EXACT answers, you need unlimited precision. You can hardly expect an N-digit answer to be correct when using less than N digits of precision. Since e * n! - x_n is approximately 1/(n+1), you'd want to calculate e with an accuracy of approximately 1/(n+1)!. -- Robert Israel israel(a)math.MyUniversitysInitials.ca Department of Mathematics http://www.math.ubc.ca/~israel University of British Columbia Vancouver, BC, Canada
From: Mensanator on 24 Jan 2010 14:47 On Jan 24, 1:33�pm, Robert Israel <isr...(a)math.MyUniversitysInitials.ca> wrote: > Mensanator <mensana...(a)aol.com> writes: > > > > > A simple formula for that total number of arrangements is > > > > > [ e * n! ] > > > > > where the square brackets denote the floor function. > > > > Yeah, but that breaks down at n =3D 18: > > > Probably due to the limited precision of the calculation of e. > > > But that's an important point, isn't it? > > > To get EXACT answers, you need unlimited precision. > > You can hardly expect an N-digit answer to be correct when using > less than N digits of precision. � Of course, that's why I posted the this addendum to my original post. You have to be aware of the precision to which your math system calculates e. Am I correct in assuming no system calculates e to an infinite number of places? So there will always be some n for which [e*n!] does not give the correct answer? > Since e * n! - x_n is approximately > 1/(n+1), you'd want to calculate e with an accuracy of approximately > 1/(n+1)!. > -- > Robert Israel � � � � � � �isr...(a)math.MyUniversitysInitials.ca > Department of Mathematics � � � �http://www.math.ubc.ca/~israel > University of British Columbia � � � � � �Vancouver, BC, Canada
From: Mensanator on 24 Jan 2010 14:49 On Jan 24, 1:23�pm, Robert Israel <isr...(a)math.MyUniversitysInitials.ca> wrote: > Mensanator <mensana...(a)aol.com> writes: > > On Jan 24, 11:45=A0am, David W. Cantrell <DWCantr...(a)sigmaxi.net> wrote: > > > TCL <tl...(a)cox.net> wrote: > > > > What is the closed form formula (if any) of the sum > > > > > P(n,0)+P(n,1)+....+P(n,n) > > > > > where P(n,i) is the number of permutations of n taken i at a time? > > > > It appears that you want the total number of arrangements of a set with n > > > elements, as discussed at > > > <http://www.research.att.com/~njas/sequences/A000522>. > > > > A simple formula for that total number of arrangements is > > > > [ e * n! ] > > > > where the square brackets denote the floor function. > > > Yeah, but that breaks down at n =3D 18: > > > 1 2 2 > > 2 5 5 > > 3 16 16 > > 4 65 65 > > 5 326 326 > > 6 1957 1957 > > 7 13700 13700 > > 8 109601 109601 > > 9 986410 986410 > > 10 9864101 9864101 > > 11 108505112 108505112 > > 12 1302061345 1302061345 > > 13 16926797486 16926797486 > > 14 236975164805 236975164805 > > 15 3554627472076 3554627472076 > > 16 56874039553217 56874039553217 > > 17 966858672404690 966858672404690 > > 18 17403456103284421 17403456103284420 � <-- > > 19 330665665962404000 330665665962403968 > > 20 6613313319248080001 6613313319248079872 > > 21 138879579704209680022 138879579704209670144 > > 22 3055350753492612960485 3055350753492612939776 > > 23 70273067330330098091156 70273067330330098139136 > > 24 1686553615927922354187745 1686553615927922288230400 > > 25 42163840398198058854693626 42163840398198055595147264 > > 26 1096259850353149530222034277 1096259850353149479833567232 > > 27 29599015959535037315994925480 29599015959535034993433640960 > > 28 828772446866981044847857913441 828772446866981067777072168960 > > 29 24034400959142450300587879489790 24034400959142450684060116189184 > > > output of sum_of_perm.py > > # Python 3.1 > > import math > > for n in range(1,30): > > � print(n,end=3D' ') > > � q =3D [1] > > � for i in range(n,0,-1): > > � � q.append(q[-1]*i) > > � print(sum(q),math.floor(math.exp(1)*math.factorial(n))) > > Insufficient accuracy being used in evaluating e? I assume so. � > > 17403456103284421 is correct for n=18, according to Maple. How many places will Maple calculate e to? Will it work for n=100? n=1000? n=1000000? > > Note that n! e = sum_{k=0}^infty n!/k! > � � � � � � � �= sum_{k=0}^n n!/k! + sum_{k=n+1}^infty n!/k! > > and sum_{k=n+1}^infty n!/k! < sum_{j=1}^infty 1/(n+1)^j = 1/n > -- > Robert Israel � � � � � � �isr...(a)math.MyUniversitysInitials.ca > Department of Mathematics � � � �http://www.math.ubc.ca/~israel > University of British Columbia � � � � � �Vancouver, BC, Canada- Hide quoted text - > > - Show quoted text -
From: Robert Israel on 24 Jan 2010 15:21 Mensanator <mensanator(a)aol.com> writes: > On Jan 24, 1:23=EF=BF=BDpm, Robert Israel > <isr...(a)math.MyUniversitysInitials.ca> wrote: > > Mensanator <mensana...(a)aol.com> writes: > > > On Jan 24, 11:45=3DA0am, David W. Cantrell <DWCantr...(a)sigmaxi.net> > > > wro= > te: > > > > TCL <tl...(a)cox.net> wrote: > > > > > What is the closed form formula (if any) of the sum > > > > > > > P(n,0)+P(n,1)+....+P(n,n) > > > > > > > where P(n,i) is the number of permutations of n taken i at a time? > > > > > > It appears that you want the total number of arrangements of a set > > > > wi= > th n > > > > elements, as discussed at > > > > <http://www.research.att.com/~njas/sequences/A000522>. > > > > > > A simple formula for that total number of arrangements is > > > > > > [ e * n! ] > > > > > > where the square brackets denote the floor function. > > > > > Yeah, but that breaks down at n =3D3D 18: > > > > > 1 2 2 > > > 2 5 5 > > > 3 16 16 > > > 4 65 65 > > > 5 326 326 > > > 6 1957 1957 > > > 7 13700 13700 > > > 8 109601 109601 > > > 9 986410 986410 > > > 10 9864101 9864101 > > > 11 108505112 108505112 > > > 12 1302061345 1302061345 > > > 13 16926797486 16926797486 > > > 14 236975164805 236975164805 > > > 15 3554627472076 3554627472076 > > > 16 56874039553217 56874039553217 > > > 17 966858672404690 966858672404690 > > > 18 17403456103284421 17403456103284420 =EF=BF=BD <-- > > > 19 330665665962404000 330665665962403968 > > > 20 6613313319248080001 6613313319248079872 > > > 21 138879579704209680022 138879579704209670144 > > > 22 3055350753492612960485 3055350753492612939776 > > > 23 70273067330330098091156 70273067330330098139136 > > > 24 1686553615927922354187745 1686553615927922288230400 > > > 25 42163840398198058854693626 42163840398198055595147264 > > > 26 1096259850353149530222034277 1096259850353149479833567232 > > > 27 29599015959535037315994925480 29599015959535034993433640960 > > > 28 828772446866981044847857913441 828772446866981067777072168960 > > > 29 24034400959142450300587879489790 24034400959142450684060116189184 > > > > > output of sum_of_perm.py > > > # Python 3.1 > > > import math > > > for n in range(1,30): > > > =EF=BF=BD print(n,end=3D3D' ') > > > =EF=BF=BD q =3D3D [1] > > > =EF=BF=BD for i in range(n,0,-1): > > > =EF=BF=BD =EF=BF=BD q.append(q[-1]*i) > > > =EF=BF=BD print(sum(q),math.floor(math.exp(1)*math.factorial(n))) > > > > Insufficient accuracy being used in evaluating e? > > I assume so. > =EF=BF=BD > > > > 17403456103284421 is correct for n=3D18, according to Maple. > > How many places will Maple calculate e to? > > Will it work for n=3D100? n=3D1000? n=3D1000000? Maple will use as many digits as you tell it to, up to 268435448 on a 32-bit system (I'm not sure if 64-bit systems could handle more). Of course, time and memory could also be limitations. But n=10^6 might be doable. Since log[10]((10^6)!) ~ 5565709, you'd want at least that many digits. -- Robert Israel israel(a)math.MyUniversitysInitials.ca Department of Mathematics http://www.math.ubc.ca/~israel University of British Columbia Vancouver, BC, Canada
First
|
Prev
|
Pages: 1 2 Prev: Number Representation Problem Next: bisecting quadrilateral to get rhomboid, proof |