From: TCL on 24 Jan 2010 11:14 What is the closed form formula (if any) of the sum P(n,0)+P(n,1)+....+P(n,n) where P(n,i) is the number of permutations of n taken i at a time? -TCL
From: David W. Cantrell on 24 Jan 2010 12:45 TCL <tlim1(a)cox.net> wrote: > What is the closed form formula (if any) of the sum > > P(n,0)+P(n,1)+....+P(n,n) > > where P(n,i) is the number of permutations of n taken i at a time? It appears that you want the total number of arrangements of a set with n elements, as discussed at <http://www.research.att.com/~njas/sequences/A000522>. A simple formula for that total number of arrangements is [ e * n! ] where the square brackets denote the floor function. David W. Cantrell
From: David W. Cantrell on 24 Jan 2010 12:58 David W. Cantrell <DWCantrell(a)sigmaxi.net> wrote: > TCL <tlim1(a)cox.net> wrote: > > What is the closed form formula (if any) of the sum > > > > P(n,0)+P(n,1)+....+P(n,n) > > > > where P(n,i) is the number of permutations of n taken i at a time? > > It appears that you want the total number of arrangements of a set with n > elements, as discussed at > <http://www.research.att.com/~njas/sequences/A000522>. > > A simple formula for that total number of arrangements is > > [ e * n! ] > > where the square brackets denote the floor function. I should have specified that the above formula is valid for n >= 1. Consider n = 0 as a special case. David
From: Mensanator on 24 Jan 2010 13:52 On Jan 24, 11:45 am, David W. Cantrell <DWCantr...(a)sigmaxi.net> wrote: > TCL <tl...(a)cox.net> wrote: > > What is the closed form formula (if any) of the sum > > > P(n,0)+P(n,1)+....+P(n,n) > > > where P(n,i) is the number of permutations of n taken i at a time? > > It appears that you want the total number of arrangements of a set with n > elements, as discussed at > <http://www.research.att.com/~njas/sequences/A000522>. > > A simple formula for that total number of arrangements is > > [ e * n! ] > > where the square brackets denote the floor function. Yeah, but that breaks down at n = 18: 1 2 2 2 5 5 3 16 16 4 65 65 5 326 326 6 1957 1957 7 13700 13700 8 109601 109601 9 986410 986410 10 9864101 9864101 11 108505112 108505112 12 1302061345 1302061345 13 16926797486 16926797486 14 236975164805 236975164805 15 3554627472076 3554627472076 16 56874039553217 56874039553217 17 966858672404690 966858672404690 18 17403456103284421 17403456103284420 <-- 19 330665665962404000 330665665962403968 20 6613313319248080001 6613313319248079872 21 138879579704209680022 138879579704209670144 22 3055350753492612960485 3055350753492612939776 23 70273067330330098091156 70273067330330098139136 24 1686553615927922354187745 1686553615927922288230400 25 42163840398198058854693626 42163840398198055595147264 26 1096259850353149530222034277 1096259850353149479833567232 27 29599015959535037315994925480 29599015959535034993433640960 28 828772446866981044847857913441 828772446866981067777072168960 29 24034400959142450300587879489790 24034400959142450684060116189184 output of sum_of_perm.py # Python 3.1 import math for n in range(1,30): print(n,end=' ') q = [1] for i in range(n,0,-1): q.append(q[-1]*i) print(sum(q),math.floor(math.exp(1)*math.factorial(n))) > > David W. Cantrell
From: Mensanator on 24 Jan 2010 14:10 On Jan 24, 12:52 pm, Mensanator <mensana...(a)aol.com> wrote: > On Jan 24, 11:45 am, David W. Cantrell <DWCantr...(a)sigmaxi.net> wrote: > > > > > > > TCL <tl...(a)cox.net> wrote: > > > What is the closed form formula (if any) of the sum > > > > P(n,0)+P(n,1)+....+P(n,n) > > > > where P(n,i) is the number of permutations of n taken i at a time? > > > It appears that you want the total number of arrangements of a set with n > > elements, as discussed at > > <http://www.research.att.com/~njas/sequences/A000522>. > > > A simple formula for that total number of arrangements is > > > [ e * n! ] > > > where the square brackets denote the floor function. > > Yeah, but that breaks down at n = 18: Probably due to the limited precision of the calculation of e. But that's an important point, isn't it? To get EXACT answers, you need unlimited precision. > > 1 2 2 > 2 5 5 > 3 16 16 > 4 65 65 > 5 326 326 > 6 1957 1957 > 7 13700 13700 > 8 109601 109601 > 9 986410 986410 > 10 9864101 9864101 > 11 108505112 108505112 > 12 1302061345 1302061345 > 13 16926797486 16926797486 > 14 236975164805 236975164805 > 15 3554627472076 3554627472076 > 16 56874039553217 56874039553217 > 17 966858672404690 966858672404690 > 18 17403456103284421 17403456103284420 <-- > 19 330665665962404000 330665665962403968 > 20 6613313319248080001 6613313319248079872 > 21 138879579704209680022 138879579704209670144 > 22 3055350753492612960485 3055350753492612939776 > 23 70273067330330098091156 70273067330330098139136 > 24 1686553615927922354187745 1686553615927922288230400 > 25 42163840398198058854693626 42163840398198055595147264 > 26 1096259850353149530222034277 1096259850353149479833567232 > 27 29599015959535037315994925480 29599015959535034993433640960 > 28 828772446866981044847857913441 828772446866981067777072168960 > 29 24034400959142450300587879489790 24034400959142450684060116189184 > > output of sum_of_perm.py > # Python 3.1 > import math > for n in range(1,30): > print(n,end=' ') > q = [1] > for i in range(n,0,-1): > q.append(q[-1]*i) > print(sum(q),math.floor(math.exp(1)*math.factorial(n))) > > > > > > > David W. Cantrell
|
Next
|
Last
Pages: 1 2 Prev: Number Representation Problem Next: bisecting quadrilateral to get rhomboid, proof |