From: Leonid Shifrin on
Here is a 2-step process which does it:

In[1]:= Clear[n, x, step1, step2];

In[2]:= step1 =
FullSimplify[ComplexExpand[(Cos[x] + I*Sin[x])^n],
Assumptions -> {Element[n, Integers], Element[x, Reals]}]

Out[2]= Cos[n Arg[E^(I x)]] + Sinh[n Log[E^(I x)]]

In[3]:= step2 = step1 /. {Arg[Exp[I*x_]] :> x, Log[Exp[I*x_]] :> I*x }

Out[3]= Cos[n x] + I Sin[n x]

The second step is manual and is correct under an assumption that -Pi<x<=Pi,
which we can safely take given that the original function is periodic.

Perhaps there are shorter and completely automatic ways based only on
built-in rules but I did not find them.

Regards,
Leonid


On Sat, Jan 23, 2010 at 4:36 AM, Arnold <sender999ster(a)gmail.com> wrote:

> How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos
> [n*x] +I*Sin [n*x]?
>
> Thanks.
>
>


From: Peter Breitfeld on
Arnold wrote:

> How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in
> Cos [n*x] +I*Sin [n*x]?
>
> Thanks.
>

(Cos[x] + I*Sin[x])^n // FullSimplify // PowerExpand // ExpToTrig

--
_________________________________________________________________
Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de

From: David Park on
Doing it in steps:

(Cos[x] + I*Sin[x])^n;
% // TrigToExp
Simplify[%, n \[Element] Integers]
% // ExpToTrig

(1/2 (-E^(-I x) + E^(I x)) + 1/2 (E^(-I x) + E^(I x)))^n
E^(I n x)
Cos[n x] + I Sin[n x]


David Park
djmpark(a)comcast.net
http://home.comcast.net/~djmpark/


From: Arnold [mailto:sender999ster(a)gmail.com]

How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos
[n*x] +I*Sin [n*x]?

Thanks.



From: Bob Hanlon on

expr = (Cos[x] + I*Sin[x])^n;

expr // FullSimplify // PowerExpand // ExpToTrig

Cos[n*x] + I*Sin[n*x]

FullSimplify[expr, Element[n, Integers]] // ExpToTrig

Cos[n*x] + I*Sin[n*x]


Bob Hanlon

---- Arnold <sender999ster(a)gmail.com> wrote:

=============
How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos [n*x] +I*Sin [n*x]?

Thanks.



From: Andrzej Kozlowski on

On 24 Jan 2010, at 11:39, Sjoerd C. de Vries wrote:

> Hi Arnold,
>
> ExpToTrig[PowerExpand[FullSimplify[(Cos[x] + I*Sin[x])^n]]]
>
> but this is actually only true for n integer OR x positive reals.


Actually, it's true for any n (so all those assumptions
Element[n,Integers] various people have posted are not needed). For
example:

FullSimplify[
ComplexExpand[(Cos[x] + I*Sin[x])^(3/2),
TargetFunctions -> {Re, Im, Abs}], -Pi < x <= Pi] // ExpToTrig

cos((3 x)/2)+I sin((3 x)/2)

Is quite correct as is

FullSimplify[
ComplexExpand[(Cos[x] + I*Sin[x])^(I),
TargetFunctions -> {Re, Im, Abs}], -Pi < x <= Pi] // ExpToTrig

cosh(x)-sinh(x)

In full generality:

FullSimplify[
ComplexExpand[(Cos[x] + I*Sin[x])^n,
TargetFunctions -> {Re, Im, Abs}], -Pi < x <= Pi] // ExpToTrig

cos(n x)+I sin(n x)


Andrzej Kozlowski
>
> Cheers -- Sjoed
>
> On Jan 23, 2:35 pm, Arnold <sender999s...(a)gmail.com> wrote:
>> How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in
Cos[n*x] +I*Sin [n*x]?
>>
>> Thanks.
>
>