Prev: Using "If" and "NDSolve" together
Next: DynamicModule not saving reliably a variable between sessions
From: Arnold on 23 Jan 2010 07:35 How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos [n*x] +I*Sin [n*x]? Thanks.
From: Adriano Pascoletti on 24 Jan 2010 05:37 FullSimplify[(Cos[x] + I*Sin[x])^n, Element[n, Integers]] // ComplexExpand Adriano Pascoletti 2010/1/23 Arnold <sender999ster(a)gmail.com> > How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos > [n*x] +I*Sin [n*x]? > > Thanks. > >
From: Sjoerd C. de Vries on 24 Jan 2010 05:37 Hi Arnold, ExpToTrig[PowerExpand[FullSimplify[(Cos[x] + I*Sin[x])^n]]] but this is actually only true for n integer OR x positive reals. Cheers -- Sjoed On Jan 23, 2:35 pm, Arnold <sender999s...(a)gmail.com> wrote: > How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos[n*x] +I*Sin [n*x]? > > Thanks.
From: Patrick Scheibe on 24 Jan 2010 05:36 Hi, what about ExpToTrig@ Simplify[TrigToExp[(Cos[x] + I*Sin[x])^n], n \[Element] Integers] ? Cheers Patrick On Sat, 2010-01-23 at 07:36 -0500, Arnold wrote: > How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos [n*x] +I*Sin [n*x]? > > Thanks. >
From: DC on 24 Jan 2010 05:39 In[4]:= FullSimplify[Cos[x] + I Sin[x]] Out[4]= E^(I x) In[7]:= FullSimplify[(Cos[x] + I Sin[x])^n, Assumptions -> {n \[Element] Integers}] Out[7]= E^(I n x) -Francesco On 01/23/2010 12:35 PM, Arnold wrote: > How by means of Mathematica to transform (Cos [x] +I* Sin [x]) ^n in Cos [n*x] +I*Sin [n*x]? > > Thanks. >
|
Next
|
Last
Pages: 1 2 Prev: Using "If" and "NDSolve" together Next: DynamicModule not saving reliably a variable between sessions |