From: TefJlives on
Thanks for all the replies, I've got it now.

Best,

Greg

On Aug 10, 2:05 pm, Gottfried Helms <he...(a)uni-kassel.de> wrote:
> Am 10.08.2010 13:41 schrieb Rob Johnson:
>
>
>
> > In article <d0f8a489-3e5e-4eea-b4a9-ce24d7631...(a)f20g2000pro.googlegroups.com>,
> > achille <achille_...(a)yahoo.com.hk> wrote:
> >> On Aug 10, 11:56 am, TefJlives <gmarkow...(a)gmail.com> wrote:
> >>> Hello all,
>
> >>> Does anyone recognize this one? I'm looking for a closed form.
>
> >>> f(z) = 1/1 + z/(1*3) + z^2/(1*3*5) + z^3/(1*3*5*7) + ...
>
> >>> The denominator in the n-th term is the product of the odd integers up
> >>> to 2n+1. Thanks.
>
> >>> Greg
> >> f(z) = sqrt(pi/(2*t))*exp(t/2)*erf(sqrt(t/2))   ?
>
> > Indeed.
>
> > Define
>
> >            x   x^3    x^5
> >     g(x) = - + --- + ----- + ...                             [1]
> >            1   1*3   1*3*5
>
> > Then f(x) = g(sqrt(x))/sqrt(x).  Furthermore,
>
> >                 x^2   x^4
> >     g'(x) = 1 + --- + --- + ...
> >                  1    1*3
>
> >           = 1 + x g(x)                                       [2]
>
> > To solve the differential equation [2], we need an integrating
> > factor of exp(-x^2/2):
>
> >     (exp(-x^2/2) g(x))'
>
> >     = exp(-x^2/2) (g'(x) - x g(x))
>
> >     = exp(-x^2/2)                                            [3]
>
> > Integrating [3], we get
>
> >     exp(-x^2/2) g(x)
>
> >     = sqrt(pi/2) erf(x/sqrt(2))                              [4]
>
> > Therefore,
>
> >     g(x) = sqrt(pi/2) exp(x^2/2) erf(x/sqrt(2))              [5]
>
> > Thus,
>
> >     f(x)
>
> >     = g(sqrt(x))/sqrt(x)
>
> >             pi        x             x
> >     = sqrt( -- ) exp( - ) erf(sqrt( - ))                     [6]
> >             2x        2             2
>
> > Rob Johnson <r...(a)trash.whim.org>
>
> Very well!
>
> Gottfried Helms