From: Han de Bruijn on 23 Jun 2010 08:53 integral(t = 0 .. 2*Pi) exp( A.cos(t) + B.sin(t) ) dt = ?? Han de Bruijn
From: dvsarwate on 23 Jun 2010 09:24 On Jun 23, 7:53 am, Han de Bruijn <umum...(a)gmail.com> wrote: > integral(t = 0 .. 2*Pi) exp( A.cos(t) + B.sin(t) ) dt = ?? > > Han de Bruijn Since the argument of the exponential can be expressed as sqrt(A^2 + B^2).cos(t - arctan(B/A)), the value should be proportional to I_0(sqrt(A^2 + B^2)) where I_0 is the 0-th order modified Bessel function of the first kind. http://www.math.sfu.ca/~cbm/aands/page_376.htm Dilip Sarwate
From: Dan Cass on 23 Jun 2010 05:23 > integral(t = 0 .. 2*Pi) exp( A.cos(t) + B.sin(t) ) dt > = ?? > > Han de Bruijn Maple doesn't even know the indefinite integral of exp(cos(x)). Nor does it know the definite integral of exp(cos(x)) from 0 to 2*Pi. This may mean that even a complex analysis contour integral approach will not work.
From: Han de Bruijn on 23 Jun 2010 10:24 On Jun 23, 3:23 pm, Dan Cass <dc...(a)sjfc.edu> wrote: > > integral(t = 0 .. 2*Pi) exp( A.cos(t) + B.sin(t) ) dt > > = ?? > > > Han de Bruijn > > Maple doesn't even know the indefinite > integral of exp(cos(x)). > > Nor does it know the definite integral > of exp(cos(x)) from 0 to 2*Pi. > > This may mean that even a complex analysis contour integral approach will not work. Well, I've seen some complex analysis in this group, just done by hand (David Ullrich / World Wide Wade) where Maple couldn't keep up with .. Han de Bruijn
From: Rob Johnson on 23 Jun 2010 11:47 In article <c641a0f7-31f3-4fe7-b393-b19339c2cb0e(a)5g2000yqz.googlegroups.com>, dvsarwate <dvsarwate(a)gmail.com> wrote: >On Jun 23, 7:53 am, Han de Bruijn <umum...(a)gmail.com> wrote: >> integral(t = 0 .. 2*Pi) exp( A.cos(t) + B.sin(t) ) dt = ?? >> >> Han de Bruijn > >Since the argument of the exponential can be expressed >as sqrt(A^2 + B^2).cos(t - arctan(B/A)), the value should >be proportional to I_0(sqrt(A^2 + B^2)) where I_0 is the >0-th order modified Bessel function of the first kind. > >http://www.math.sfu.ca/~cbm/aands/page_376.htm In fact it is 2pi I_0(sqrt(A^2 + B^2)), which can be computed as oo --- 2 pi A^2 + B^2 k > ---- ( --------- ) --- k!^2 4 k=0 Rob Johnson <rob(a)trash.whim.org> take out the trash before replying to view any ASCII art, display article in a monospaced font
|
Next
|
Last
Pages: 1 2 Prev: Different take on birthday problem Next: Vedic astrology is not intuition of Rishis.!! |