From: HardySpicer on
On May 5, 8:57 pm, Torsten Hennig <Torsten.Hen...(a)umsicht.fhg.de>
wrote:
> > On May 5, 6:38 pm, Torsten Hennig
> > <Torsten.Hen...(a)umsicht.fhg.de>
> > wrote:
> > > > What is the limit of this summation when
> > > > k-->infinity. Here 'a' is a
> > > > scalar
> > > >              k-1
> > > > p(a)=a sum  (1-a)^(k-j-1)
> > > >              j=0
>
> > > > if mag(1-a)<1
>
> > > > Thanks
>
> > > > Hardy.
>
> > > Do you know
> > > sum_{j=0}^{k-1} q^j
> > > (geometric series) ?
>
> > > Best wishes
> > > Torsten.
>
> > What is q^j? I know what a geometric series is..Do I
> > define say c=(1-
> > a) and then split c^(k-j-1) into c^(k-1) X c^-j ?
>
> > Hardy
>
> sum_{j=0}^{k-1} q^j = sum_{j=0}^{k-1} q^{k-j-1}
>
> Best wishes
> Torsten.

So the sum to infinity must be

1/(1-q) - is that right?


Hardy