From: JT on
On 16 Juli, 18:34, Sam Wormley <sworml...(a)gmail.com> wrote:
> On 7/16/10 8:26 AM, Sam Wormley wrote:
>
> > On 7/16/10 1:51 AM, JT wrote:
> >> On 15 Juli, 20:56, Sam Wormley<sworml...(a)gmail.com> wrote:
>
> >>> Little weak on the unit conversions,JT?
> >>>http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>
> >> Oh i also noted you did not answer, admit you have no idea about
> >> earths absolute rotation velocity in RPM.
>
> >> You are just as slow as usual, just handwaving that is what bots are
> >> good for no critical thinking going.
> >> JT
>
> > Try not to be so stooopid, JT, I gave you the answer in rpm here:
> >http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>
>    .00069634577038 rpm

Well would be nice to know where you got ***0.72921158553E-4 rad/s***
from, i tried google it turned out your the only one who used those
numbers, are you sure this is just not juggle art?

Are you a juggler Sam, where did you get those numbers.

JT
From: Sam Wormley on
On 7/16/10 12:25 PM, JT wrote:
> On 16 Juli, 18:34, Sam Wormley<sworml...(a)gmail.com> wrote:
>> On 7/16/10 8:26 AM, Sam Wormley wrote:
>>
>>> On 7/16/10 1:51 AM, JT wrote:
>>>> On 15 Juli, 20:56, Sam Wormley<sworml...(a)gmail.com> wrote:
>>
>>>>> Little weak on the unit conversions,JT?
>>>>> http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>>
>>>> Oh i also noted you did not answer, admit you have no idea about
>>>> earths absolute rotation velocity in RPM.
>>
>>>> You are just as slow as usual, just handwaving that is what bots are
>>>> good for no critical thinking going.
>>>> JT
>>
>>> Try not to be so stooopid, JT, I gave you the answer in rpm here:
>>> http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>>
>> .00069634577038 rpm
>
> Well would be nice to know where you got ***0.72921158553E-4 rad/s***
> from, i tried google it turned out your the only one who used those
> numbers, are you sure this is just not juggle art?
>
> Are you a juggler Sam, where did you get those numbers.
>
> JT

You are not up on this are you?
http://earth-info.nga.mil/GandG/sathtml/gpsdoc2010_06a.html

> NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY
> GPS PRECISE EPHEMERIDES, SATELLITE CLOCK PARAMETERS
> AND SMOOTHED OBSERVATIONS
>
> PRECISE EPHEMERIS
>
> Earth-centered Earth-fixed trajectory
> Coordinate system: WGS84 (G1150)
> Position -- x,y,z (km)
> Velocity -- dx/dt,dy/dt,dz/dt (dm/s)
> GPS time -- year, day, hour, minute
> Trajectory interval: 15 min.
> Standard Trajectory referenced to satellite center of mass
> Optional Trajectory referenced to satellite antenna phase center
>
>
> SATELLITE CLOCK PARAMETERS
>
> Clock parameters for each satellite:
> Time offset (microseconds)
> Frequency offset (10E-4 microsec/s = parts in 10E10)
> Time interval for parameters: 15 min.
> Satellite clock events: All events processed as reinitializations
>
>
> SMOOTHED OBSERVATIONS
>
> Smoothed range and range difference observations (km) with corrections
> applied (see below)
> GPS time of observation (year, day, seconds from beginning of day)
> Standard deviation of observation (km)
> Coordinate system: WGS84 (G1150)
> Station coordinates: Position -- x,y,z (m), Epoch 2001.0
> Velocity -- dx/dt,dy/dt,dz/dt (m/year)
> Temperature (degrees Celsius)
> Pressure (millibars)
> Humidity (percent)
> Data interval: 15 min.
> Smoothing uses carrier phase to smooth range and range difference
> measurements collected at a 1.5 second rate for NGA and Air Force
> monitor stations and at a 30 second rate for IGS monitor stations
> Minimum elevation angle for observation: 10 degrees
> National Geospatial-Intelligence Agency and Air Force monitor station data
> collected and smoothed using similar procedures
> References: Computer Program Development Spec., Master Control
> Station, Ephemeris/Clock Computer Program, NAVSTAR GPS Operational
> Control System Segment, CP-MCSEC-302C, Part 1, Appendix A, 7 May 1993.
> Description of the Smoothing Algorithm in the NGA Monitor Station
> Network, (MSN29), Applied Research Laboratories, The University of
> Texas at Austin, GR-SGG-97-1, 3 April 1997.
>
>
> PHYSICAL CONSTANTS
>
> GM(Earth) = 398600.4418 km**3/s**2
> GM(Sun) = 132712400000 km**3/s**2
> GM(Moon) = 4902.799186 km**3/s**2
> Moon radius = 1738 km
> Sun radius = 696000 km
> Earth semi-major axis (a) = 6378.137 km
> Inverse flattening (1/f) = 298.257223563
> Earth angular velocity = 0.72921158553 X 10**-4 Rad/s
> Speed of light = 299792.458 km/s
> Love's constant = 0.290
> Solar constant = 4.560 X 10**-6 N/m**2
> Astronomical Unit = 149597870.691 km
>
>
> STATION COORDINATES (CARTESIAN)
> WGS84 (G1150) Epoch 2001.0
> COORDINATES ARE IN METERS
> VELOCITIES ARE IN METERS/YEAR
>
> ID X (m) Y (m) Z (m)
> 85128) AMC1 -1248599.616 -4819441.045 3976490.143
> -.0179 .0010 -.0037
> 85129) ASCN 6118523.959 -1572350.788 -876463.966
> -.0025 -.0048 .0102
> 85130) DGAR 1916197.038 6029998.760 -801737.324
> -.0422 .0203 .0307
> 85131) KWGL -6160884.189 1339851.890 960843.048
> .0207 .0673 .0270
> 85132) HAWI -5511980.267 -2200247.059 2329480.888
> -.0095 .0630 .0298
> 85143) CAPE 918988.120 -5534552.966 3023721.377
> -.0102 -.0015 .0015
> --------------------------------------------------
> 85402) AUSA -3939182.131 3467075.376 -3613220.824
> -.0408 .0036 .0473
> 85403) ARGA 2745499.065 -4483636.591 -3599054.582
> .0021 -.0100 .0070
> 85404) ENGD 3981776.642 -89239.095 4965284.650
> -.0138 .0165 .0077
> 85405) BAH1 3633910.281 4425277.149 2799862.429
> -.0297 .0091 .0253
> 85406) ECUA 1272867.329 -6252772.124 -23801.818
> .0030 .0004 .0099
> 85407) USNO 1112160.327 -4842854.274 3985496.368
> -.0148 -.0001 .0010
> 85410) ALAS -2296298.460 -1484805.050 5743080.090
> -.0222 -.0036 -.0092
> 85411) NZLD -4780787.718 436877.170 -4185259.709
> -.0235 .0192 .0220
> 85412) SAFR 5066232.133 2719226.969 -2754392.735
> .0001 .0209 .0140
> 85413) SKOR -3067863.123 4067641.035 3824295.830
> -.0290 -.0076 -.0102
> 85414) TAHI -5246403.866 -3077285.554 -1913839.459
> -.0425 .0468 .0291
>
>
> STATION COORDINATES (GEODETIC)
> WGS84 (G1150) Epoch 2001.0
>
> ID LAT (deg N) LONG (deg E) ELLIPSOID HT (m)
>
> 85128) 38.80293823 255.47540511 1911.811
> 85129) -7.95132970 345.58786971 106.382
> 85130) -7.26984340 72.37092199 -64.333
> 85131) 8.72250080 167.73052657 39.733
> 85132) 21.56149103 201.76066969 425.854
> 85143) 28.48373800 279.42769549 -24.005
> --------------------------------------------------
> 85402) -34.72900041 138.64734499 38.155
> 85403) -34.57370168 301.48070059 48.747
> 85404) 51.45374284 358.71610888 163.097
> 85405) 26.20914022 50.60814451 -14.707
> 85406) -.21515762 281.50639203 2922.537
> 85407) 38.92056568 282.93370406 57.872
> 85410) 64.68794025 212.88703366 176.570
> 85411) -41.27264988 174.77870783 47.892
> 85412) -25.74634609 28.22403736 1416.405
> 85413) 37.07756804 127.02403172 51.792
> 85414) -17.57703053 210.39381438 99.927
>
>
>
> CORRECTIONS APPLIED TO MEASUREMENTS
>
> Ionospheric delay: 2-frequency, 1st order correction
> Tropospheric refraction: Saastamoinen hydrostatic and wet zenith delay
> models and Niell hydrostatic and wet mapping functions
> Periodic relativistic effects
>
>
> Satellite antenna offset (satellite body centered coordinates, meters)
> Block II PRN's - Delta x= 0.2794, Delta y= 0.0000, Delta z= 0.9519
>
> Block IIA PRN's - Delta x= 0.2794, Delta y= 0.0000, Delta z= 0.9519
>
> Block IIR PRN 02 - Delta x= -0.0099, Delta y= 0.0061, Delta z= -0.0820
> Block IIR PRN 11 - Delta x= 0.0019, Delta y= 0.0011, Delta z= 1.5141
> Block IIR PRN 13 - Delta x= 0.0024, Delta y= 0.0025, Delta z= 1.6140
> Block IIR PRN 14 - Delta x= 0.0018, Delta y= 0.0002, Delta z= 1.6137
> Block IIR PRN 16 - Delta x= -0.0098, Delta y= 0.0060, Delta z= 1.6630
> Block IIR PRN 18 - Delta x= -0.0098, Delta y= 0.0060, Delta z= 1.5923
> Block IIR PRN 19 - Delta x= -0.0079, Delta y= 0.0046, Delta z= -0.0180
> Block IIR PRN 20 - Delta x= 0.0022, Delta y= 0.0014, Delta z= 1.6140
> Block IIR PRN 21 - Delta x= 0.0023, Delta y= -0.0006, Delta z= 1.5840
> Block IIR PRN 22 - Delta x= 0.0018, Delta y= -0.0009, Delta z= 0.0598
> Block IIR PRN 23 - Delta x= -0.0088, Delta y= 0.0035, Delta z= 0.0004
> Block IIR PRN 28 - Delta x= 0.0019, Delta y= 0.0007, Delta z= 1.5131
>
> Block IIR-M PRN 01 - Delta x= 0.01245, Delta y= -0.00038, Delta z= -0.02283
> Block IIR-M PRN 05 - Delta x= 0.00292, Delta y= -0.00005, Delta z= -0.01671
> Block IIR-M PRN 07 - Delta x= 0.00127, Delta y= 0.00025, Delta z= 0.00056
> Block IIR-M PRN 12 - Delta x= -0.01016, Delta y= 0.00587, Delta z= -0.09355
> Block IIR-M PRN 15 - Delta x= -0.00996, Delta y= 0.00579, Delta z= -0.01227
> Block IIR-M PRN 17 - Delta x= -0.00996, Delta y= 0.00599, Delta z= -0.10060
> Block IIR-M PRN 29 - Delta x= -0.01012, Delta y= 0.00591, Delta z= -0.01512
> Block IIR-M PRN 31 - Delta x= 0.00160, Delta y= 0.00033, Delta z= -0.05750
>
> Block IIF PRN 25 - Delta x= 0.39200, Delta y= 0.00200, Delta z= 1.09300
>
>
> Station displacement due to tides
> Yaw Bias: JPL yaw bias model for Block II and IIA satellites in eclipse
>
>
> FORCE MODELING
>
> Gravitational:
> EGM96 Earth gravity model truncated at degree 12 and order 12
> Solar and Lunar gravity using the DE403 ephemeredes, J2000 epoch,
> and IAU Resolutions on Astronomical Constants, Time Scales, and
> the Fundamental Reference Frame (1976-1980)
> Solid Earth tides
>
> Non-gravitational:
> Radiation Pressure
> The JPL TJPLXYZ03 - II/IIA version model for Block II and IIA satellites
> The JPL TJPLXYZ03 - IIR version model for Block IIR satellites
> The ?????? - IIF version model for Block IIF satellites
> Thrusts
> Momentum dumps
>
> Kinematic:
> Luni-solar and planetary precession (IAU Resolutions, as above)
> Nutation (IAU Resolutions, as above)
> Earth rotation (IAU Resolutions, as above)
> Polar Motion (using NGA initial values generated the week before
> the orbit fit) + diurnal and semi-diurnal effects
> UT1-UTC (using NGA initial values generated the week before the
> orbit fit) + Zonal tide effects + diurnal and semi-diurnal effects
>
> Integration step size: 300 seconds, reduced to 10 seconds during
> eclipse boundary crossings
>
>
> ORBIT ESTIMATION METHOD
>
> Kalman Filter/RTS Smoother (Square Root Information implementation)
> Initial conditions: From previous fit
> Solution parameters:
> Satellite state vector in element form at trajectory epoch --
> semi-major axis
> eccentricity * sin(argument of perigee)
> eccentricity * cos(argument of perigee)
> inclination
> mean anomaly + argument of perigee
> right ascension of the ascending node
> Satellite clock parameters -- Time offset, Frequency offset
> Monitor station clock parameters (excluding master station) --
> Time offset, Frequency offset
> Polar motion parameters -- Pole and pole rate components along
> Greenwich meridian, Pole and pole rate components along
> meridian 90 deg west of Greenwich, Rate of change and
> acceleration of UT1-UTC
> Satellite radiation pressure parameters -- Radiation pressure
> scale, and Y-axis acceleration
> Tropospheric refraction -- One stochastic zenith delay
> parameter per station
> Minimum range observation uncertainty(1-sigma):100 cm (IGS Stations)
> 80 cm (AF Station 85130)
> 40 cm (Other AF and NGA stations)
> Minimum range difference observation uncertainty (1-sigma): 1.5 cm
> Process noise in Kalman Filter:
> Radiation pressure (each satellite)--
> Decorrelation time 14,400 s
> Steady state sigmas --
> SCALE 0.05
> Y-AXIS 0.5 X 10**-12 km/s**2
> Tropospheric refraction variance rate: 2.89 cm**2/hr
> Station clock white noise spectral density: (each station) --
> Time offset 0.1111 X 10**-2 (microseconds)**2/s
> Frequency offset 0.1111 X 10**-8 (ppm)**2/s
> Satellite clock white noise spectral density: (each satellite)
> Time offset 0.1111 X 10**-2 (microseconds)**2/s
> Frequency offset 0.1111 X 10**-8 (ppm)**2/s
> Frequency drift 0. (ppm/s)**2/s
>
>
> SATELLITE CLOCK ESTIMATION METHOD
>
> Kalman Filter/RTS Smoother (Square Root Information implementation)
> Orbit solutions from above method are held fixed for satellite clock
> estimation
> Solution parameters:
> Satellite clock parameters -- Time offset, Frequency offset
> Monitor station clock parameters (excluding master station) --
> Time offset, Frequency offset
> Tropospheric refraction -- One stochastic zenith delay parameter
> per station.
> Minimum range observation uncertainty(1-sigma):100 cm (IGS Stations)
> 80 cm (AF Station 85130)
> 40 cm (Other AF and NGA stations)
> Minimum range difference observation uncertainty (1-sigma): 15.0 cm
> Process noise in Kalman Filter:
> Tropospheric refraction variance rate: 2.89 cm**2/hr
>
> Station clock white noise spectral densities:
> NGA stations (except USNO) and Air Force stations (except Colorado Springs):
> Time offset 0.1944 X 10**-8 (microseconds)**2/s
> Frequency offset 0.4440 X 10**-19 (ppm)**2/s
> NGA station at USNO and Air Force station at Colorado Springs:
> Time offset 0.1380 X 10**-9 (microseconds)**2/s
> Frequency offset 0.4440 X 10**-19 (ppm)**2/s
> IGS stations:
> Time offset 0.3456 X 10**-8 (microseconds)**2/s
> Frequency offset 0.4440 X 10**-19 (ppm)**2/s
>
> Satellite clock white noise spectral densities:
> Satellite Block IIR/IIF Rubidium clocks
> Time offset 0.8640 X 10**-9 (microseconds)**2/s
> Frequency offset 0.1110 X 10**-18 (ppm)**2/s
> Frequency drift 0. (ppm/s)**2/s
> Satellite Block II/IIA Rubidium clocks
> Time offset 0.1944 X 10**-8 (microseconds)**2/s
> Frequency offset 0.1110 X 10**-18 (ppm)**2/s
> Frequency drift 0. (ppm/s)**2/s
> Satellite Cesium clocks
> Time offset 0.13824 X 10**-7 (microseconds)**2/s
> Frequency offset 0.1000 X 10**-17 (ppm)**2/s
> Frequency drift 0. (ppm/s)**2/s
> Satellite 'Noisy' Cesium clocks
> Time offset 0.2000 X 10**-7 (microseconds)**2/s
> Frequency offset 0.1110 X 10**-16 (ppm)**2/s
> Frequency drift 0. (ppm/s)**2/s
>
>
> Reference: Swift, E., Mathematical Description of the GPS Multi-Satellite
> Filter/Smoother, NSWCDD Report (Oct. 2001).
>
>
>
>
>
>

From: Sam Wormley on
On 7/16/10 12:18 PM, JT wrote:
> On 16 Juli, 15:26, Sam Wormley<sworml...(a)gmail.com> wrote:
>> On 7/16/10 1:51 AM, JT wrote:
>>
>>
>>
>>
>>
>>> On 15 Juli, 20:56, Sam Wormley<sworml...(a)gmail.com> wrote:
>>>> On 7/15/10 11:39 AM,JTwrote:
>>
>>>>> On 15 Juli, 15:22, Sam Wormley<sworml...(a)gmail.com> wrote:
>>>>>> On 7/15/10 7:16 AM,JTwrote:
>>
>>>>>>> So what do you suppose the ship rotate relative (i said it rotate at
>>>>>>> 100 000RPM relative earth but what make you say it is really rotating,
>>>>>>> so tell me what is the real rotational RPM and versus what i guess you
>>>>>>> do not hold our earth for the origo of nonerotation?)
>>
>>>>>> Rotation is absolute. Laser gyro measures rotation.
>>
>>>>> So Sam what RPM does earth rotate with.
>>
>>>>> JT
>>
>>>> Little weak on the unit conversions,JT?
>>>> http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>>
>>> Oh i also noted you did not answer, admit you have no idea about
>>> earths absolute rotation velocity in RPM.
>>
>>> You are just as slow as usual, just handwaving that is what bots are
>>> good for no critical thinking going.
>>> JT
>>
>> Try not to be so stooopid, JT, I gave you the answer in rpm here:
>> http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>
> And this would be the absolut rotation or the rotation relative sun?

This is "rotation" relative to the whole universe.

From: Androcles on

"Craig Markwardt" <craig.markwardt(a)gmail.com> wrote in message
news:76251d45-3897-47ba-8be2-d5f1933f0a8d(a)q12g2000yqj.googlegroups.com...
On Jul 15, 7:50 am, GSS <gurcharn_san...(a)yahoo.com> wrote:
> On Jul 14, 8:55 pm, Craig Markwardt <craig.markwa...(a)gmail.com> wrote:
>
> > On Jul 10, 12:57 pm, GSS <gurcharn_san...(a)yahoo.com> wrote:
>
> >> Friends,
> >> Last year I had held detailed discussions in these forums, on
> >> the feasibility of experimental detection of absolute motion.
> >>http://groups.google.com/group/sci.astro/browse_frm/thread/e24d067ec6...
> >> Subsequently I compiled a formal paper titled "Proposed experiment for
> >> detection of absolute motion" and submitted to Physics Essays (An
> >> International Journal dedicated to fundamental questions in Physics)
> >> for publication. After a detailed peer review, this paper has now been
> >> published in this journal [http://www.physicsessays.com/]. The
> >> abstract of this paper is reproduced below.
>
> > This paper is an example of poor refereeing by the reviewer and also
> > your own neglect of criticism that occurred in the previous thread.
> > As noted by Mark L. Ferguson now - and myself a year ago - you have
> > assumed something which is not SR as your starting point, and thus,
> > your conclusions are irrelevant regarding SR. Your fundamental error
> > is that you assumed that somehow the clocks attached to the moving
> > "spacecraft" were simultaneously synchronized in the spacecraft frame
> > and a "universal" frame. Since this is impossible in SR, your
> > conclusions are invalid. Even a marginally knowledgable reviewer
> > should have picked up on this.
>
> > The irony is that your paper does attempt to derive the up- and down-
> > link times using the principles of SR in section 2, but then you
> > immediately discard the results because it does not provide the answer
> > you desire. The truth is that - assuming the principles of SR - the
> > up- and down-link times *will* be different as measured by observers
> > co-moving in two different frames with their own co-moving clocks. In
> > fact, by exchanging up- and down-link timing information after the
> > observations were taken, the two observers could estimate their
> > relative velocity. But this is not a measurement of "absolute"
> > motion. That is, unless you could have already placed one observer at
> > "absolute rest" before the experiment started, which presupposes what
> > you are trying to measure in the first place. This was noted one year
> > ago, but you ignored it.
>
> At the end of section 2 I have stated, "The inability to directly
> measure the signal propagation times T_u and T_d in the stationary
> reference frame K, is not due to any technological limitations, but is
> a logical consequence of the relativity of time and the corresponding
> clock synchronization constraints, induced by the second postulate of
> SR. Therefore, if we begin by assuming the validity of the second
> postulate of SR, we cannot detect absolute motion because successful
> detection of such absolute motion will itself invalidate the second
> postulate of SR."
>
> You keep stressing that I must invalidate SR by first using the
> infrastructure of SR and then demonstrating the internal
> contradictions in it. However, I have repeatedly clarified to you that
> there are no mathematical contradictions in SR which could have been
> demonstrated the way you want it.

What I want is irrelevant. If you admit that SR is internally
consistent
========================================
Bwahahahahahahahaha!
If you admit you are a clueless lunatic I'll tell you why it isn't.





From: JT on
On 16 Juli, 19:38, Sam Wormley <sworml...(a)gmail.com> wrote:
> On 7/16/10 12:25 PM, JT wrote:
>
>
>
>
>
> > On 16 Juli, 18:34, Sam Wormley<sworml...(a)gmail.com>  wrote:
> >> On 7/16/10 8:26 AM, Sam Wormley wrote:
>
> >>> On 7/16/10 1:51 AM, JT wrote:
> >>>> On 15 Juli, 20:56, Sam Wormley<sworml...(a)gmail.com>  wrote:
>
> >>>>> Little weak on the unit conversions,JT?
> >>>>>http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>
> >>>> Oh i also noted you did not answer, admit you have no idea about
> >>>> earths absolute rotation velocity in RPM.
>
> >>>> You are just as slow as usual, just handwaving that is what bots are
> >>>> good for no critical thinking going.
> >>>> JT
>
> >>> Try not to be so stooopid, JT, I gave you the answer in rpm here:
> >>>http://www.wolframalpha.com/input/?i=0.72921158553E-4+rad%2Fs+in+rpm
>
> >>     .00069634577038 rpm
>
> > Well would be nice to know where you got ***0.72921158553E-4 rad/s***
> > from, i tried google it turned out your the only one who used those
> > numbers, are you sure this is just not juggle art?
>
> > Are you a juggler Sam, where did you get those numbers.
>
> > JT
>
>    You are not up on this are you?
>    http://earth-info.nga.mil/GandG/sathtml/gpsdoc2010_06a.html
>
>
>
> >                      NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY
> >               GPS PRECISE EPHEMERIDES, SATELLITE CLOCK PARAMETERS
> >                           AND SMOOTHED OBSERVATIONS
>
> >                               PRECISE EPHEMERIS
>
> > Earth-centered Earth-fixed trajectory
> > Coordinate system:  WGS84 (G1150)
> > Position -- x,y,z (km)
> > Velocity -- dx/dt,dy/dt,dz/dt (dm/s)
> > GPS time -- year, day, hour, minute
> > Trajectory interval:  15 min.
> > Standard Trajectory referenced to satellite center of mass
> > Optional Trajectory referenced to satellite antenna phase center
>
> >                          SATELLITE CLOCK PARAMETERS
>
> > Clock parameters for each satellite:
> >      Time offset (microseconds)
> >      Frequency offset (10E-4 microsec/s = parts in 10E10)
> > Time interval for parameters: 15 min.
> > Satellite clock events: All events processed as reinitializations
>
> >                           SMOOTHED OBSERVATIONS
>
> > Smoothed range and range difference observations (km) with corrections
> >   applied (see below)
> > GPS time of observation (year, day, seconds from beginning of day)
> > Standard deviation of observation (km)
> > Coordinate system:  WGS84 (G1150)
> > Station coordinates: Position -- x,y,z (m), Epoch 2001.0
> >                      Velocity -- dx/dt,dy/dt,dz/dt (m/year)
> > Temperature (degrees Celsius)
> > Pressure (millibars)
> > Humidity (percent)
> > Data interval: 15 min.
> > Smoothing uses carrier phase to smooth range and range difference
> >   measurements collected at a 1.5 second rate for NGA and Air Force
> >   monitor stations and at a 30 second rate for IGS monitor stations
> > Minimum elevation angle for observation:  10 degrees
> > National Geospatial-Intelligence Agency and Air Force monitor station data
> >   collected and smoothed using similar procedures
> >   References: Computer Program Development Spec., Master Control
> >   Station, Ephemeris/Clock Computer Program, NAVSTAR GPS Operational
> >   Control System Segment, CP-MCSEC-302C, Part 1, Appendix A, 7 May 1993.
> >   Description of the Smoothing Algorithm in the NGA Monitor Station
> >   Network, (MSN29), Applied Research Laboratories, The University of
> >   Texas at Austin, GR-SGG-97-1, 3 April 1997.
>
> >                             PHYSICAL CONSTANTS
>
> > GM(Earth) =  398600.4418 km**3/s**2
> > GM(Sun)   = 132712400000 km**3/s**2
> > GM(Moon)  =  4902.799186 km**3/s**2
> > Moon radius =   1738 km
> > Sun radius  = 696000 km
> > Earth semi-major axis (a) = 6378.137  km
> > Inverse flattening (1/f)  = 298.257223563
> > Earth angular velocity    = 0.72921158553 X 10**-4 Rad/s
> > Speed of light  = 299792.458 km/s
> > Love's constant = 0.290
> > Solar constant = 4.560 X 10**-6 N/m**2
> > Astronomical Unit = 149597870.691 km
>
> >                     STATION COORDINATES (CARTESIAN)
> >                       WGS84 (G1150)  Epoch 2001..0
> >                        COORDINATES ARE IN METERS
> >                      VELOCITIES ARE IN METERS/YEAR
>
> >         ID             X (m)           Y (m)           Z (m)
> >       85128) AMC1  -1248599.616    -4819441.045     3976490.143
> >                          -.0179           .0010          -.0037
> >       85129) ASCN   6118523.959    -1572350.788     -876463.966
> >                          -.0025          -.0048           .0102
> >       85130) DGAR   1916197.038     6029998.760     -801737.324
> >                          -.0422           .0203           .0307
> >       85131) KWGL  -6160884.189     1339851.890      960843.048
> >                           .0207           .0673           .0270
> >       85132) HAWI  -5511980.267    -2200247.059     2329480.888
> >                          -.0095           .0630           .0298
> >       85143) CAPE    918988.120    -5534552.966     3023721.377
> >                          -.0102          -.0015           .0015
> >          --------------------------------------------------
> >       85402) AUSA  -3939182.131     3467075.376    -3613220.824
> >                          -.0408           .0036           .0473
> >       85403) ARGA   2745499.065    -4483636.591    -3599054.582
> >                           .0021          -.0100           .0070
> >       85404) ENGD   3981776.642      -89239.095     4965284.650
> >                          -.0138           .0165           .0077
> >       85405) BAH1   3633910.281     4425277.149     2799862.429
> >                          -.0297           .0091           .0253
> >       85406) ECUA   1272867.329    -6252772.124      -23801.818
> >                           .0030           .0004           .0099
> >       85407) USNO   1112160.327    -4842854.274     3985496.368
> >                          -.0148          -.0001           .0010
> >       85410) ALAS  -2296298.460    -1484805.050     5743080.090
> >                          -.0222          -.0036          -.0092
> >       85411) NZLD  -4780787.718      436877.170    -4185259.709
> >                          -.0235           .0192           .0220
> >       85412) SAFR   5066232.133     2719226.969    -2754392.735
> >                           .0001           .0209           .0140
> >       85413) SKOR  -3067863.123     4067641.035     3824295.830
> >                          -.0290          -.0076          -.0102
> >       85414) TAHI  -5246403.866    -3077285.554    -1913839.459
> >                          -.0425           .0468           .0291
>
> >                     STATION COORDINATES  (GEODETIC)
> >                       WGS84 (G1150)  Epoch 2001..0
>
> >         ID       LAT (deg N)       LONG (deg E)     ELLIPSOID HT (m)
>
> >       85128)     38.80293823       255.47540511        1911.811
> >       85129)     -7.95132970       345.58786971         106.382
> >       85130)     -7.26984340        72.37092199         -64.333
> >       85131)      8.72250080       167.73052657          39.733
> >       85132)     21.56149103       201.76066969         425.854
> >       85143)     28.48373800       279.42769549         -24.005
> >          --------------------------------------------------
> >       85402)    -34.72900041       138.64734499          38.155
> >       85403)    -34.57370168       301.48070059          48.747
> >       85404)     51.45374284       358.71610888         163.097
> >       85405)     26.20914022        50.60814451         -14.707
> >       85406)      -.21515762       281.50639203        2922.537
> >       85407)     38.92056568       282.93370406          57.872
> >       85410)     64.68794025       212.88703366         176.570
> >       85411)    -41.27264988       174.77870783          47.892
> >       85412)    -25.74634609        28.22403736        1416.405
> >       85413)     37.07756804       127.02403172          51.792
> >       85414)    -17.57703053       210.39381438          99.927
>
> >                      CORRECTIONS APPLIED TO MEASUREMENTS
>
> > Ionospheric delay:  2-frequency, 1st order correction
> > Tropospheric refraction: Saastamoinen hydrostatic and wet zenith delay
> >   models and Niell hydrostatic and wet mapping functions
> > Periodic relativistic effects
>
> > Satellite antenna offset (satellite body centered coordinates, meters)
> >   Block II  PRN's  - Delta x=  0.2794, Delta y=  0.0000, Delta z=  0.9519
>
> >   Block IIA PRN's  - Delta x=  0.2794, Delta y=  0.0000, Delta z=  0.9519
>
> >   Block IIR PRN 02 - Delta x= -0.0099, Delta y=  0.0061, Delta z= -0.0820
> >   Block IIR PRN 11 - Delta x=  0.0019, Delta y=  0.0011, Delta z=  1.5141
> >   Block IIR PRN 13 - Delta x=  0.0024, Delta y=  0.0025, Delta z=  1.6140
> >   Block IIR PRN 14 - Delta x=  0.0018, Delta y=  0.0002, Delta z=  1.6137
> >   Block IIR PRN 16 - Delta x= -0.0098, Delta y=  0.0060, Delta z=  1.6630
> >   Block IIR PRN 18 - Delta x= -0.0098, Delta y=  0.0060, Delta z=  1.5923
> >   Block IIR PRN 19 - Delta x= -0.0079, Delta y=  0.0046, Delta z= -0.0180
> >   Block IIR PRN 20 - Delta x=  0.0022, Delta y=  0.0014, Delta z=  1.6140
> >   Block IIR PRN 21 - Delta x=  0.0023, Delta y= -0.0006, Delta z=  1.5840
> >   Block IIR PRN 22 - Delta x=  0.0018, Delta y= -0.0009, Delta z=  0.0598
> >   Block IIR PRN 23 - Delta x= -0.0088, Delta y=  0.0035, Delta z=  0.0004
> >   Block IIR PRN 28 - Delta x=  0.0019, Delta y=  0.0007, Delta z=  1.5131
>
> >   Block IIR-M PRN 01 - Delta x=  0.01245, Delta y= -0.00038, Delta z= -0.02283
> >   Block IIR-M PRN 05 - Delta x=  0.00292, Delta y= -0.00005, Delta z= -0.01671
> >   Block IIR-M PRN 07 - Delta x=  0.00127, Delta y=  0.00025, Delta z=  0.00056
> >   Block IIR-M PRN 12 - Delta x= -0.01016, Delta y=  0.00587, Delta z= -0.09355
> >   Block IIR-M PRN 15 - Delta x= -0.00996, Delta y=  0.00579, Delta z= -0.01227
> >   Block IIR-M PRN 17 - Delta x= -0.00996, Delta y=  0.00599, Delta z= -0.10060
> >   Block IIR-M PRN 29 - Delta x= -0.01012, Delta y=  0.00591, Delta z= -0.01512
> >   Block IIR-M PRN 31 - Delta x=  0.00160, Delta y=  0.00033, Delta z= -0.05750
>
> >   Block  IIF  PRN 25 - Delta x=  0.39200, Delta y=  0.00200, Delta z=  1.09300
>
> > Station displacement due
>
> ...
>
> läs mer »

Well i can see an idiot ***trying*** to answer our rotation relative
the sun as RPM, but the idiot said he could give us the absolute
rotation of earth in RPM.

But however i am still curious how you draw the conclusion.

360 / (24 * 60) = 0.25 degrees /min

http://www.wolframalpha.com/input/?i=0.25+degrees+/min+to+RPM

6.94x10^-4 rpm (revolutions per minute)

JT